Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation
Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity ( κ ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantial...
Gespeichert in:
Veröffentlicht in: | Nano research 2023-04, Vol.16 (4), p.5047-5055 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5055 |
---|---|
container_issue | 4 |
container_start_page | 5047 |
container_title | Nano research |
container_volume | 16 |
creator | Fu, Shubin Liu, Dizhou Deng, Yuanpeng Guo, Jingran Zhao, Han Zhou, Jian Zhang, Pengyu Yu, Hongxuan Dang, Shixuan Zhang, Jianing Li, Hui Xu, Xiang |
description | Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity (
κ
) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest
κ
of 95 mW·m
−1
·K
−1
at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s
−1
) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions. |
doi_str_mv | 10.1007/s12274-022-5063-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817932468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817932468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9Fk0ubjKItfsOBFvYa0nXa7tM2atAf_vVmqeHJgmGF4n3fgJeSas1vOmLqLHEDllAHQgklB4YSsuDGaslSnvzuH_JxcxLhnTALP9Yp8bFwo_egq9HPMKgxu6KpsdKNvujIcbw6Db7GPWeNDtuvaHZ1wOCThNAfMph2GwfVZnNOpG-Pcu6nz4yU5a1wf8epnrsn748Pb5pluX59eNvdbWgkuJ1oooZVgBaulhlorU9RC5UYLVTZVqRVyLeu6KFNLkFiCUqKpGSTaoTFGrMnN4nsI_nPGONm9n8OYXlrQXBkBudRJxRdVFXyMARt7CN3gwpflzB7js0t8NsVnj_FZSAwsTEzascXw5_w_9A0bn3Nc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817932468</pqid></control><display><type>article</type><title>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Shubin ; Liu, Dizhou ; Deng, Yuanpeng ; Guo, Jingran ; Zhao, Han ; Zhou, Jian ; Zhang, Pengyu ; Yu, Hongxuan ; Dang, Shixuan ; Zhang, Jianing ; Li, Hui ; Xu, Xiang</creator><creatorcontrib>Fu, Shubin ; Liu, Dizhou ; Deng, Yuanpeng ; Guo, Jingran ; Zhao, Han ; Zhou, Jian ; Zhang, Pengyu ; Yu, Hongxuan ; Dang, Shixuan ; Zhang, Jianing ; Li, Hui ; Xu, Xiang</creatorcontrib><description>Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity (
κ
) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest
κ
of 95 mW·m
−1
·K
−1
at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s
−1
) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-5063-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aerogels ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Ceramics ; Chemistry and Materials Science ; Compressive properties ; Condensed Matter Physics ; Embedding ; Etching ; Heat resistance ; Heat transfer ; High temperature ; Low temperature ; Materials Science ; Nanotechnology ; Oxidation resistance ; Research Article ; Robustness ; Strain ; Temperature ; Thermal conductivity ; Thermal etching ; Thermal insulation ; Thermal radiation ; Thermal stability ; Thermomechanical properties ; Yttrium ; Zircon</subject><ispartof>Nano research, 2023-04, Vol.16 (4), p.5047-5055</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</citedby><cites>FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-5063-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-5063-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fu, Shubin</creatorcontrib><creatorcontrib>Liu, Dizhou</creatorcontrib><creatorcontrib>Deng, Yuanpeng</creatorcontrib><creatorcontrib>Guo, Jingran</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Yu, Hongxuan</creatorcontrib><creatorcontrib>Dang, Shixuan</creatorcontrib><creatorcontrib>Zhang, Jianing</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><title>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity (
κ
) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest
κ
of 95 mW·m
−1
·K
−1
at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s
−1
) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.</description><subject>Aerogels</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Compressive properties</subject><subject>Condensed Matter Physics</subject><subject>Embedding</subject><subject>Etching</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Oxidation resistance</subject><subject>Research Article</subject><subject>Robustness</subject><subject>Strain</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal etching</subject><subject>Thermal insulation</subject><subject>Thermal radiation</subject><subject>Thermal stability</subject><subject>Thermomechanical properties</subject><subject>Yttrium</subject><subject>Zircon</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9Fk0ubjKItfsOBFvYa0nXa7tM2atAf_vVmqeHJgmGF4n3fgJeSas1vOmLqLHEDllAHQgklB4YSsuDGaslSnvzuH_JxcxLhnTALP9Yp8bFwo_egq9HPMKgxu6KpsdKNvujIcbw6Db7GPWeNDtuvaHZ1wOCThNAfMph2GwfVZnNOpG-Pcu6nz4yU5a1wf8epnrsn748Pb5pluX59eNvdbWgkuJ1oooZVgBaulhlorU9RC5UYLVTZVqRVyLeu6KFNLkFiCUqKpGSTaoTFGrMnN4nsI_nPGONm9n8OYXlrQXBkBudRJxRdVFXyMARt7CN3gwpflzB7js0t8NsVnj_FZSAwsTEzascXw5_w_9A0bn3Nc</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Fu, Shubin</creator><creator>Liu, Dizhou</creator><creator>Deng, Yuanpeng</creator><creator>Guo, Jingran</creator><creator>Zhao, Han</creator><creator>Zhou, Jian</creator><creator>Zhang, Pengyu</creator><creator>Yu, Hongxuan</creator><creator>Dang, Shixuan</creator><creator>Zhang, Jianing</creator><creator>Li, Hui</creator><creator>Xu, Xiang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230401</creationdate><title>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</title><author>Fu, Shubin ; Liu, Dizhou ; Deng, Yuanpeng ; Guo, Jingran ; Zhao, Han ; Zhou, Jian ; Zhang, Pengyu ; Yu, Hongxuan ; Dang, Shixuan ; Zhang, Jianing ; Li, Hui ; Xu, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerogels</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Compressive properties</topic><topic>Condensed Matter Physics</topic><topic>Embedding</topic><topic>Etching</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Oxidation resistance</topic><topic>Research Article</topic><topic>Robustness</topic><topic>Strain</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal etching</topic><topic>Thermal insulation</topic><topic>Thermal radiation</topic><topic>Thermal stability</topic><topic>Thermomechanical properties</topic><topic>Yttrium</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Shubin</creatorcontrib><creatorcontrib>Liu, Dizhou</creatorcontrib><creatorcontrib>Deng, Yuanpeng</creatorcontrib><creatorcontrib>Guo, Jingran</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Yu, Hongxuan</creatorcontrib><creatorcontrib>Dang, Shixuan</creatorcontrib><creatorcontrib>Zhang, Jianing</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Shubin</au><au>Liu, Dizhou</au><au>Deng, Yuanpeng</au><au>Guo, Jingran</au><au>Zhao, Han</au><au>Zhou, Jian</au><au>Zhang, Pengyu</au><au>Yu, Hongxuan</au><au>Dang, Shixuan</au><au>Zhang, Jianing</au><au>Li, Hui</au><au>Xu, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>5047</spage><epage>5055</epage><pages>5047-5055</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity (
κ
) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest
κ
of 95 mW·m
−1
·K
−1
at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s
−1
) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-5063-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2023-04, Vol.16 (4), p.5047-5055 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2817932468 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerogels Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Ceramics Chemistry and Materials Science Compressive properties Condensed Matter Physics Embedding Etching Heat resistance Heat transfer High temperature Low temperature Materials Science Nanotechnology Oxidation resistance Research Article Robustness Strain Temperature Thermal conductivity Thermal etching Thermal insulation Thermal radiation Thermal stability Thermomechanical properties Yttrium Zircon |
title | Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonaceous%20ceramic%20nanofibrous%20aerogels%20for%20high-temperature%20thermal%20superinsulation&rft.jtitle=Nano%20research&rft.au=Fu,%20Shubin&rft.date=2023-04-01&rft.volume=16&rft.issue=4&rft.spage=5047&rft.epage=5055&rft.pages=5047-5055&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-5063-2&rft_dat=%3Cproquest_cross%3E2817932468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817932468&rft_id=info:pmid/&rfr_iscdi=true |