Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation

Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity ( κ ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2023-04, Vol.16 (4), p.5047-5055
Hauptverfasser: Fu, Shubin, Liu, Dizhou, Deng, Yuanpeng, Guo, Jingran, Zhao, Han, Zhou, Jian, Zhang, Pengyu, Yu, Hongxuan, Dang, Shixuan, Zhang, Jianing, Li, Hui, Xu, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5055
container_issue 4
container_start_page 5047
container_title Nano research
container_volume 16
creator Fu, Shubin
Liu, Dizhou
Deng, Yuanpeng
Guo, Jingran
Zhao, Han
Zhou, Jian
Zhang, Pengyu
Yu, Hongxuan
Dang, Shixuan
Zhang, Jianing
Li, Hui
Xu, Xiang
description Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity ( κ ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest κ of 95 mW·m −1 ·K −1 at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s −1 ) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.
doi_str_mv 10.1007/s12274-022-5063-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817932468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817932468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9Fk0ubjKItfsOBFvYa0nXa7tM2atAf_vVmqeHJgmGF4n3fgJeSas1vOmLqLHEDllAHQgklB4YSsuDGaslSnvzuH_JxcxLhnTALP9Yp8bFwo_egq9HPMKgxu6KpsdKNvujIcbw6Db7GPWeNDtuvaHZ1wOCThNAfMph2GwfVZnNOpG-Pcu6nz4yU5a1wf8epnrsn748Pb5pluX59eNvdbWgkuJ1oooZVgBaulhlorU9RC5UYLVTZVqRVyLeu6KFNLkFiCUqKpGSTaoTFGrMnN4nsI_nPGONm9n8OYXlrQXBkBudRJxRdVFXyMARt7CN3gwpflzB7js0t8NsVnj_FZSAwsTEzascXw5_w_9A0bn3Nc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817932468</pqid></control><display><type>article</type><title>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fu, Shubin ; Liu, Dizhou ; Deng, Yuanpeng ; Guo, Jingran ; Zhao, Han ; Zhou, Jian ; Zhang, Pengyu ; Yu, Hongxuan ; Dang, Shixuan ; Zhang, Jianing ; Li, Hui ; Xu, Xiang</creator><creatorcontrib>Fu, Shubin ; Liu, Dizhou ; Deng, Yuanpeng ; Guo, Jingran ; Zhao, Han ; Zhou, Jian ; Zhang, Pengyu ; Yu, Hongxuan ; Dang, Shixuan ; Zhang, Jianing ; Li, Hui ; Xu, Xiang</creatorcontrib><description>Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity ( κ ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest κ of 95 mW·m −1 ·K −1 at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s −1 ) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-5063-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aerogels ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Ceramics ; Chemistry and Materials Science ; Compressive properties ; Condensed Matter Physics ; Embedding ; Etching ; Heat resistance ; Heat transfer ; High temperature ; Low temperature ; Materials Science ; Nanotechnology ; Oxidation resistance ; Research Article ; Robustness ; Strain ; Temperature ; Thermal conductivity ; Thermal etching ; Thermal insulation ; Thermal radiation ; Thermal stability ; Thermomechanical properties ; Yttrium ; Zircon</subject><ispartof>Nano research, 2023-04, Vol.16 (4), p.5047-5055</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</citedby><cites>FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-5063-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-5063-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Fu, Shubin</creatorcontrib><creatorcontrib>Liu, Dizhou</creatorcontrib><creatorcontrib>Deng, Yuanpeng</creatorcontrib><creatorcontrib>Guo, Jingran</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Yu, Hongxuan</creatorcontrib><creatorcontrib>Dang, Shixuan</creatorcontrib><creatorcontrib>Zhang, Jianing</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><title>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity ( κ ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest κ of 95 mW·m −1 ·K −1 at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s −1 ) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.</description><subject>Aerogels</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Compressive properties</subject><subject>Condensed Matter Physics</subject><subject>Embedding</subject><subject>Etching</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Oxidation resistance</subject><subject>Research Article</subject><subject>Robustness</subject><subject>Strain</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal etching</subject><subject>Thermal insulation</subject><subject>Thermal radiation</subject><subject>Thermal stability</subject><subject>Thermomechanical properties</subject><subject>Yttrium</subject><subject>Zircon</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9Fk0ubjKItfsOBFvYa0nXa7tM2atAf_vVmqeHJgmGF4n3fgJeSas1vOmLqLHEDllAHQgklB4YSsuDGaslSnvzuH_JxcxLhnTALP9Yp8bFwo_egq9HPMKgxu6KpsdKNvujIcbw6Db7GPWeNDtuvaHZ1wOCThNAfMph2GwfVZnNOpG-Pcu6nz4yU5a1wf8epnrsn748Pb5pluX59eNvdbWgkuJ1oooZVgBaulhlorU9RC5UYLVTZVqRVyLeu6KFNLkFiCUqKpGSTaoTFGrMnN4nsI_nPGONm9n8OYXlrQXBkBudRJxRdVFXyMARt7CN3gwpflzB7js0t8NsVnj_FZSAwsTEzascXw5_w_9A0bn3Nc</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Fu, Shubin</creator><creator>Liu, Dizhou</creator><creator>Deng, Yuanpeng</creator><creator>Guo, Jingran</creator><creator>Zhao, Han</creator><creator>Zhou, Jian</creator><creator>Zhang, Pengyu</creator><creator>Yu, Hongxuan</creator><creator>Dang, Shixuan</creator><creator>Zhang, Jianing</creator><creator>Li, Hui</creator><creator>Xu, Xiang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230401</creationdate><title>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</title><author>Fu, Shubin ; Liu, Dizhou ; Deng, Yuanpeng ; Guo, Jingran ; Zhao, Han ; Zhou, Jian ; Zhang, Pengyu ; Yu, Hongxuan ; Dang, Shixuan ; Zhang, Jianing ; Li, Hui ; Xu, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-573873050d682d8795d3749837bfcb87e186dd5bdd5626eb2773fd02c31ae9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerogels</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Compressive properties</topic><topic>Condensed Matter Physics</topic><topic>Embedding</topic><topic>Etching</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Oxidation resistance</topic><topic>Research Article</topic><topic>Robustness</topic><topic>Strain</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal etching</topic><topic>Thermal insulation</topic><topic>Thermal radiation</topic><topic>Thermal stability</topic><topic>Thermomechanical properties</topic><topic>Yttrium</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Shubin</creatorcontrib><creatorcontrib>Liu, Dizhou</creatorcontrib><creatorcontrib>Deng, Yuanpeng</creatorcontrib><creatorcontrib>Guo, Jingran</creatorcontrib><creatorcontrib>Zhao, Han</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Zhang, Pengyu</creatorcontrib><creatorcontrib>Yu, Hongxuan</creatorcontrib><creatorcontrib>Dang, Shixuan</creatorcontrib><creatorcontrib>Zhang, Jianing</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Shubin</au><au>Liu, Dizhou</au><au>Deng, Yuanpeng</au><au>Guo, Jingran</au><au>Zhao, Han</au><au>Zhou, Jian</au><au>Zhang, Pengyu</au><au>Yu, Hongxuan</au><au>Dang, Shixuan</au><au>Zhang, Jianing</au><au>Li, Hui</au><au>Xu, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>5047</spage><epage>5055</epage><pages>5047-5055</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ultralight ceramic aerogels are attractive thermal superinsulating materials, but display a formidable tradeoff between low and high temperature thermal conductivity ( κ ) due to their low-density features. Embedding carbon species as infrared opacifier in ultralight ceramic aerogels can substantially reduce the thermal radiation heat transfer without compromising the ultralow solid conduction. However, the oxidation resistance of embedded carbon species still remains inadequate to prevent thermal etching at high temperatures. Herein, we report a carbonaceous design and synthesis of ceramic nanofibrous aerogels with amorphous carbon embedded in the yttrium-stabilized zircon nanofibers to achieve a high-temperature thermal superinsulating performance with robust thermomechanical stability. The aerogels display one of the lowest κ of 95 mW·m −1 ·K −1 at 1,000 °C in air among ultralight material family, as well as robust mechanical flexibility with up to 95% compressive strain, 30% non-linear fracture strain, and 99% bending strain, and high thermal stability with ultralow strength degradation less than 1% after sharp thermal shocks (240 °C·s −1 ) and working temperature up to 1,200 °C. The combined high-temperature thermal superinsulating and thermomechanical properties offer an attractive material system for robust thermal insulation under extreme conditions.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-5063-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2023-04, Vol.16 (4), p.5047-5055
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2817932468
source SpringerLink Journals - AutoHoldings
subjects Aerogels
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon
Ceramics
Chemistry and Materials Science
Compressive properties
Condensed Matter Physics
Embedding
Etching
Heat resistance
Heat transfer
High temperature
Low temperature
Materials Science
Nanotechnology
Oxidation resistance
Research Article
Robustness
Strain
Temperature
Thermal conductivity
Thermal etching
Thermal insulation
Thermal radiation
Thermal stability
Thermomechanical properties
Yttrium
Zircon
title Carbonaceous ceramic nanofibrous aerogels for high-temperature thermal superinsulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonaceous%20ceramic%20nanofibrous%20aerogels%20for%20high-temperature%20thermal%20superinsulation&rft.jtitle=Nano%20research&rft.au=Fu,%20Shubin&rft.date=2023-04-01&rft.volume=16&rft.issue=4&rft.spage=5047&rft.epage=5055&rft.pages=5047-5055&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-5063-2&rft_dat=%3Cproquest_cross%3E2817932468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817932468&rft_id=info:pmid/&rfr_iscdi=true