Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution
TiO 2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulat...
Gespeichert in:
Veröffentlicht in: | Nano research 2023-04, Vol.16 (4), p.4488-4493 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4493 |
---|---|
container_issue | 4 |
container_start_page | 4488 |
container_title | Nano research |
container_volume | 16 |
creator | Liu, Wenqiang Peng, Huiping Li, Leigang Wang, Mingmin Geng, Hongbo Huang, Xiaoqing |
description | TiO
2
is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO
2
can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu
7
S
4
nanosheet decorated TiO
2
achieves much enhanced H
2
evolution rate (11.5 mmol·g
−1
·h
−1
), which is 13.8 and 4.2 times of that of TiO
2
and Cu
7
S
4
/TiO
2
, respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu
7
S
4
/TiO
2
is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu
2+
in the Cu
7
S
4
nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO
2
, which holds great significance for being extended to other material systems and beyond. |
doi_str_mv | 10.1007/s12274-022-5169-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817932320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817932320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMQdsx4njEVV8SUUdKLNlnHOTEuxiO0j997gKiIlb7ob3fU56ELqk5JoSIm4iZUzwgjBWVLSWRX2EZlTKpiB5jn9vyvgpOotxS0jNKG9m6P3Zt-OgE-DUAYYBTAre9QbHFEaTxgDYW7wYxQvHTjsfO4CEvcPrfsWw9QGD67Qz0OJd55M3OulhnzKg27fBb8Bh-PLDmHrvztGJ1UOEi589R6_3d-vFY7FcPTwtbpeFKWmdCsrEG21aIZqKCF5ZJg0jDW2o0LzVxtbAS0EqwmzD2oqDBCKtaIWVnOZdl3N0NXF3wX-OEJPa-jG4_FKxTJElKxnJKTqlTPAxBrBqF_oPHfaKEnVwqianKjtVB6fqQGZTJ-as20D4I_9f-gb5q3ms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817932320</pqid></control><display><type>article</type><title>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</title><source>SpringerLink Journals</source><creator>Liu, Wenqiang ; Peng, Huiping ; Li, Leigang ; Wang, Mingmin ; Geng, Hongbo ; Huang, Xiaoqing</creator><creatorcontrib>Liu, Wenqiang ; Peng, Huiping ; Li, Leigang ; Wang, Mingmin ; Geng, Hongbo ; Huang, Xiaoqing</creatorcontrib><description>TiO
2
is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO
2
can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu
7
S
4
nanosheet decorated TiO
2
achieves much enhanced H
2
evolution rate (11.5 mmol·g
−1
·h
−1
), which is 13.8 and 4.2 times of that of TiO
2
and Cu
7
S
4
/TiO
2
, respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu
7
S
4
/TiO
2
is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu
2+
in the Cu
7
S
4
nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO
2
, which holds great significance for being extended to other material systems and beyond.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-5169-6</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Charge transfer ; Chemistry and Materials Science ; Communication ; Condensed Matter Physics ; Copper ; Current carriers ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electron paramagnetic resonance ; Electron spin resonance ; Electronic structure ; Electrons ; Evolution ; Heterojunctions ; Hydrogen evolution ; Materials Science ; Nanosheets ; Nanotechnology ; Photocatalysis ; Photoelectric effect ; Photoelectron spectroscopy ; Photoelectrons ; Photoluminescence ; Photons ; Photoresponse ; Recombination ; Separation ; Spectroscopy ; Spectrum analysis ; Titanium dioxide ; Toxicity ; Ultraviolet reflection ; Ultraviolet spectra</subject><ispartof>Nano research, 2023-04, Vol.16 (4), p.4488-4493</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</citedby><cites>FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-5169-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-5169-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Huiping</creatorcontrib><creatorcontrib>Li, Leigang</creatorcontrib><creatorcontrib>Wang, Mingmin</creatorcontrib><creatorcontrib>Geng, Hongbo</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><title>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>TiO
2
is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO
2
can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu
7
S
4
nanosheet decorated TiO
2
achieves much enhanced H
2
evolution rate (11.5 mmol·g
−1
·h
−1
), which is 13.8 and 4.2 times of that of TiO
2
and Cu
7
S
4
/TiO
2
, respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu
7
S
4
/TiO
2
is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu
2+
in the Cu
7
S
4
nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO
2
, which holds great significance for being extended to other material systems and beyond.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Current carriers</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Photocatalysis</subject><subject>Photoelectric effect</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photoresponse</subject><subject>Recombination</subject><subject>Separation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><subject>Ultraviolet reflection</subject><subject>Ultraviolet spectra</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMQdsx4njEVV8SUUdKLNlnHOTEuxiO0j997gKiIlb7ob3fU56ELqk5JoSIm4iZUzwgjBWVLSWRX2EZlTKpiB5jn9vyvgpOotxS0jNKG9m6P3Zt-OgE-DUAYYBTAre9QbHFEaTxgDYW7wYxQvHTjsfO4CEvcPrfsWw9QGD67Qz0OJd55M3OulhnzKg27fBb8Bh-PLDmHrvztGJ1UOEi589R6_3d-vFY7FcPTwtbpeFKWmdCsrEG21aIZqKCF5ZJg0jDW2o0LzVxtbAS0EqwmzD2oqDBCKtaIWVnOZdl3N0NXF3wX-OEJPa-jG4_FKxTJElKxnJKTqlTPAxBrBqF_oPHfaKEnVwqianKjtVB6fqQGZTJ-as20D4I_9f-gb5q3ms</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, Wenqiang</creator><creator>Peng, Huiping</creator><creator>Li, Leigang</creator><creator>Wang, Mingmin</creator><creator>Geng, Hongbo</creator><creator>Huang, Xiaoqing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230401</creationdate><title>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</title><author>Liu, Wenqiang ; Peng, Huiping ; Li, Leigang ; Wang, Mingmin ; Geng, Hongbo ; Huang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Current carriers</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Photocatalysis</topic><topic>Photoelectric effect</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photoresponse</topic><topic>Recombination</topic><topic>Separation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><topic>Ultraviolet reflection</topic><topic>Ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Huiping</creatorcontrib><creatorcontrib>Li, Leigang</creatorcontrib><creatorcontrib>Wang, Mingmin</creatorcontrib><creatorcontrib>Geng, Hongbo</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenqiang</au><au>Peng, Huiping</au><au>Li, Leigang</au><au>Wang, Mingmin</au><au>Geng, Hongbo</au><au>Huang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>4488</spage><epage>4493</epage><pages>4488-4493</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>TiO
2
is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO
2
can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu
7
S
4
nanosheet decorated TiO
2
achieves much enhanced H
2
evolution rate (11.5 mmol·g
−1
·h
−1
), which is 13.8 and 4.2 times of that of TiO
2
and Cu
7
S
4
/TiO
2
, respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu
7
S
4
/TiO
2
is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu
2+
in the Cu
7
S
4
nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO
2
, which holds great significance for being extended to other material systems and beyond.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-5169-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2023-04, Vol.16 (4), p.4488-4493 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2817932320 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Charge transfer Chemistry and Materials Science Communication Condensed Matter Physics Copper Current carriers Electrochemical impedance spectroscopy Electrochemistry Electron paramagnetic resonance Electron spin resonance Electronic structure Electrons Evolution Heterojunctions Hydrogen evolution Materials Science Nanosheets Nanotechnology Photocatalysis Photoelectric effect Photoelectron spectroscopy Photoelectrons Photoluminescence Photons Photoresponse Recombination Separation Spectroscopy Spectrum analysis Titanium dioxide Toxicity Ultraviolet reflection Ultraviolet spectra |
title | Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulate%20the%20electronic%20structure%20of%20Cu7S4%20nanosheet%20on%20TiO2%20for%20enhanced%20photocatalytic%20hydrogen%20evolution&rft.jtitle=Nano%20research&rft.au=Liu,%20Wenqiang&rft.date=2023-04-01&rft.volume=16&rft.issue=4&rft.spage=4488&rft.epage=4493&rft.pages=4488-4493&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-5169-6&rft_dat=%3Cproquest_cross%3E2817932320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817932320&rft_id=info:pmid/&rfr_iscdi=true |