Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution

TiO 2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2023-04, Vol.16 (4), p.4488-4493
Hauptverfasser: Liu, Wenqiang, Peng, Huiping, Li, Leigang, Wang, Mingmin, Geng, Hongbo, Huang, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4493
container_issue 4
container_start_page 4488
container_title Nano research
container_volume 16
creator Liu, Wenqiang
Peng, Huiping
Li, Leigang
Wang, Mingmin
Geng, Hongbo
Huang, Xiaoqing
description TiO 2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO 2 can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu 7 S 4 nanosheet decorated TiO 2 achieves much enhanced H 2 evolution rate (11.5 mmol·g −1 ·h −1 ), which is 13.8 and 4.2 times of that of TiO 2 and Cu 7 S 4 /TiO 2 , respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu 7 S 4 /TiO 2 is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu 2+ in the Cu 7 S 4 nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO 2 , which holds great significance for being extended to other material systems and beyond.
doi_str_mv 10.1007/s12274-022-5169-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817932320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817932320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMQdsx4njEVV8SUUdKLNlnHOTEuxiO0j997gKiIlb7ob3fU56ELqk5JoSIm4iZUzwgjBWVLSWRX2EZlTKpiB5jn9vyvgpOotxS0jNKG9m6P3Zt-OgE-DUAYYBTAre9QbHFEaTxgDYW7wYxQvHTjsfO4CEvcPrfsWw9QGD67Qz0OJd55M3OulhnzKg27fBb8Bh-PLDmHrvztGJ1UOEi589R6_3d-vFY7FcPTwtbpeFKWmdCsrEG21aIZqKCF5ZJg0jDW2o0LzVxtbAS0EqwmzD2oqDBCKtaIWVnOZdl3N0NXF3wX-OEJPa-jG4_FKxTJElKxnJKTqlTPAxBrBqF_oPHfaKEnVwqianKjtVB6fqQGZTJ-as20D4I_9f-gb5q3ms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817932320</pqid></control><display><type>article</type><title>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</title><source>SpringerLink Journals</source><creator>Liu, Wenqiang ; Peng, Huiping ; Li, Leigang ; Wang, Mingmin ; Geng, Hongbo ; Huang, Xiaoqing</creator><creatorcontrib>Liu, Wenqiang ; Peng, Huiping ; Li, Leigang ; Wang, Mingmin ; Geng, Hongbo ; Huang, Xiaoqing</creatorcontrib><description>TiO 2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO 2 can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu 7 S 4 nanosheet decorated TiO 2 achieves much enhanced H 2 evolution rate (11.5 mmol·g −1 ·h −1 ), which is 13.8 and 4.2 times of that of TiO 2 and Cu 7 S 4 /TiO 2 , respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu 7 S 4 /TiO 2 is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu 2+ in the Cu 7 S 4 nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO 2 , which holds great significance for being extended to other material systems and beyond.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-5169-6</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Charge transfer ; Chemistry and Materials Science ; Communication ; Condensed Matter Physics ; Copper ; Current carriers ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electron paramagnetic resonance ; Electron spin resonance ; Electronic structure ; Electrons ; Evolution ; Heterojunctions ; Hydrogen evolution ; Materials Science ; Nanosheets ; Nanotechnology ; Photocatalysis ; Photoelectric effect ; Photoelectron spectroscopy ; Photoelectrons ; Photoluminescence ; Photons ; Photoresponse ; Recombination ; Separation ; Spectroscopy ; Spectrum analysis ; Titanium dioxide ; Toxicity ; Ultraviolet reflection ; Ultraviolet spectra</subject><ispartof>Nano research, 2023-04, Vol.16 (4), p.4488-4493</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</citedby><cites>FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-5169-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-5169-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Huiping</creatorcontrib><creatorcontrib>Li, Leigang</creatorcontrib><creatorcontrib>Wang, Mingmin</creatorcontrib><creatorcontrib>Geng, Hongbo</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><title>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>TiO 2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO 2 can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu 7 S 4 nanosheet decorated TiO 2 achieves much enhanced H 2 evolution rate (11.5 mmol·g −1 ·h −1 ), which is 13.8 and 4.2 times of that of TiO 2 and Cu 7 S 4 /TiO 2 , respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu 7 S 4 /TiO 2 is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu 2+ in the Cu 7 S 4 nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO 2 , which holds great significance for being extended to other material systems and beyond.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Current carriers</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Photocatalysis</subject><subject>Photoelectric effect</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photoresponse</subject><subject>Recombination</subject><subject>Separation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><subject>Ultraviolet reflection</subject><subject>Ultraviolet spectra</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMQdsx4njEVV8SUUdKLNlnHOTEuxiO0j997gKiIlb7ob3fU56ELqk5JoSIm4iZUzwgjBWVLSWRX2EZlTKpiB5jn9vyvgpOotxS0jNKG9m6P3Zt-OgE-DUAYYBTAre9QbHFEaTxgDYW7wYxQvHTjsfO4CEvcPrfsWw9QGD67Qz0OJd55M3OulhnzKg27fBb8Bh-PLDmHrvztGJ1UOEi589R6_3d-vFY7FcPTwtbpeFKWmdCsrEG21aIZqKCF5ZJg0jDW2o0LzVxtbAS0EqwmzD2oqDBCKtaIWVnOZdl3N0NXF3wX-OEJPa-jG4_FKxTJElKxnJKTqlTPAxBrBqF_oPHfaKEnVwqianKjtVB6fqQGZTJ-as20D4I_9f-gb5q3ms</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, Wenqiang</creator><creator>Peng, Huiping</creator><creator>Li, Leigang</creator><creator>Wang, Mingmin</creator><creator>Geng, Hongbo</creator><creator>Huang, Xiaoqing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230401</creationdate><title>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</title><author>Liu, Wenqiang ; Peng, Huiping ; Li, Leigang ; Wang, Mingmin ; Geng, Hongbo ; Huang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-127b18d77850745f29c2081817a4dacf6e4370502f82d54e9e09f7d7f941f7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Current carriers</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Photocatalysis</topic><topic>Photoelectric effect</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photoresponse</topic><topic>Recombination</topic><topic>Separation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><topic>Ultraviolet reflection</topic><topic>Ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Peng, Huiping</creatorcontrib><creatorcontrib>Li, Leigang</creatorcontrib><creatorcontrib>Wang, Mingmin</creatorcontrib><creatorcontrib>Geng, Hongbo</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenqiang</au><au>Peng, Huiping</au><au>Li, Leigang</au><au>Wang, Mingmin</au><au>Geng, Hongbo</au><au>Huang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>4488</spage><epage>4493</epage><pages>4488-4493</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>TiO 2 is a promising photocatalyst due to its high thermodynamic stability and non-toxicity. However, its applications have been still limited because of the high recombination rate of electron—hole pairs. Herein, we show that by combining heterojunction construction and electronic structure regulation, the electron—hole pairs in TiO 2 can be effectively separated for enhanced photocatalytic hydrogen evolution. The optimized Cu 7 S 4 nanosheet decorated TiO 2 achieves much enhanced H 2 evolution rate (11.5 mmol·g −1 ·h −1 ), which is 13.8 and 4.2 times of that of TiO 2 and Cu 7 S 4 /TiO 2 , respectively. The results of photoluminescence spectroscopy, transient photocurrent spectra, ultraviolet—visible diffuse reflectance spectra, and electrochemical impedance spectroscopy collectively demonstrate that the enhanced photocatalytic performance of Air-Cu 7 S 4 /TiO 2 is attributed to the effective separation of charge carriers and widened photoresponse range. The electron paramagnetic resonance and X-ray photoelectron spectroscopy results indicate that the increase of Cu 2+ in the Cu 7 S 4 nanosheet after calcination can promote the charge transfer. This work provides an effective method to improve the electron migration rate and charge separation of TiO 2 , which holds great significance for being extended to other material systems and beyond.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-5169-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2023-04, Vol.16 (4), p.4488-4493
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2817932320
source SpringerLink Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Charge transfer
Chemistry and Materials Science
Communication
Condensed Matter Physics
Copper
Current carriers
Electrochemical impedance spectroscopy
Electrochemistry
Electron paramagnetic resonance
Electron spin resonance
Electronic structure
Electrons
Evolution
Heterojunctions
Hydrogen evolution
Materials Science
Nanosheets
Nanotechnology
Photocatalysis
Photoelectric effect
Photoelectron spectroscopy
Photoelectrons
Photoluminescence
Photons
Photoresponse
Recombination
Separation
Spectroscopy
Spectrum analysis
Titanium dioxide
Toxicity
Ultraviolet reflection
Ultraviolet spectra
title Modulate the electronic structure of Cu7S4 nanosheet on TiO2 for enhanced photocatalytic hydrogen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulate%20the%20electronic%20structure%20of%20Cu7S4%20nanosheet%20on%20TiO2%20for%20enhanced%20photocatalytic%20hydrogen%20evolution&rft.jtitle=Nano%20research&rft.au=Liu,%20Wenqiang&rft.date=2023-04-01&rft.volume=16&rft.issue=4&rft.spage=4488&rft.epage=4493&rft.pages=4488-4493&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-5169-6&rft_dat=%3Cproquest_cross%3E2817932320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817932320&rft_id=info:pmid/&rfr_iscdi=true