Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures

Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2023-04, Vol.16 (4), p.5695-5701
Hauptverfasser: Shangguan, Lei, Ran, Yating, Lu, Ziyu, Gao, Yutian, Shi, Lei, He, Longbing, Sun, Litao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5701
container_issue 4
container_start_page 5695
container_title Nano research
container_volume 16
creator Shangguan, Lei
Ran, Yating
Lu, Ziyu
Gao, Yutian
Shi, Lei
He, Longbing
Sun, Litao
description Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of practical applications is a critical issue to be figured out. Herein, Te nanowires with diameters ranging from sub-10 to over 80 nm are used as samples to probe into this issue. In situ heating experiments are performed on these Te nanowires using an aberration-corrected transmission electron microscopy combined with a chip-based heating holder. It is found that Te nanowires suffer sublimation at elevated temperatures rather than melting, showing size-dependent sublimation scenarios. The Te nanowires with diameter smaller than 20 nm sublimate below 205 °C, while the larger ones with diameter around 85 nm require a higher temperature of around 225 °C. During sublimation-induced shape evolution, the interfacial wetting equilibrium and crystal orientations play critical roles, leading to the formation of spherical surfaces or featured facets at the free surfaces. A mean contact angle of 107.5° is determined at the C—Te interface when the crystalline Te nanowires stay in a quasi-liquid equilibrium state. However, once the crystalline feature is overwhelming, e.g., at moderate temperatures, the ( 10 1 ¯ 1 ) , ( 11 2 ¯ 0 ) , and ( 10 1 ¯ 0 ) facets govern the free surface, despite the wetting condition at the interfaces.
doi_str_mv 10.1007/s12274-022-5190-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817931172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817931172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-68608b57c8fd27776f26d81d25ac342bd302dc17257c2aa808f53537494d73703</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19F8tE16KUOdMPBmXoesOd06uqZL0kn_vRlVvPLc5ECe5z3wInTP6COjVD4FxrnMCOWc5KykpLxAM1aWitA0l78749k1uglhT2nBWaZm6LjegT-YFodoNk3bxBG7Gq8Bd6ZzX42HgE1ncdxB43Hlx4S1rdt60-9GYiEmuenA4jD42lSA4eTaITauwyZiaOFkYvqNcOjBmzikvFt0VZs2wN3PO0efry_rxZKsPt7eF88rUglWRFKogqpNLitVWy6lLGpeWMUsz00lMr6xgnJbMckTwo1RVNW5yIXMysxKIamYo4cpt_fuOECIeu8G36WTmismS8GSnCg2UZV3IXiode-bg_GjZlSfm9VTszo1q8_N6jI5fHJCYrst-L_k_6Vv5e58-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817931172</pqid></control><display><type>article</type><title>Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures</title><source>SpringerNature Journals</source><creator>Shangguan, Lei ; Ran, Yating ; Lu, Ziyu ; Gao, Yutian ; Shi, Lei ; He, Longbing ; Sun, Litao</creator><creatorcontrib>Shangguan, Lei ; Ran, Yating ; Lu, Ziyu ; Gao, Yutian ; Shi, Lei ; He, Longbing ; Sun, Litao</creatorcontrib><description>Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of practical applications is a critical issue to be figured out. Herein, Te nanowires with diameters ranging from sub-10 to over 80 nm are used as samples to probe into this issue. In situ heating experiments are performed on these Te nanowires using an aberration-corrected transmission electron microscopy combined with a chip-based heating holder. It is found that Te nanowires suffer sublimation at elevated temperatures rather than melting, showing size-dependent sublimation scenarios. The Te nanowires with diameter smaller than 20 nm sublimate below 205 °C, while the larger ones with diameter around 85 nm require a higher temperature of around 225 °C. During sublimation-induced shape evolution, the interfacial wetting equilibrium and crystal orientations play critical roles, leading to the formation of spherical surfaces or featured facets at the free surfaces. A mean contact angle of 107.5° is determined at the C—Te interface when the crystalline Te nanowires stay in a quasi-liquid equilibrium state. However, once the crystalline feature is overwhelming, e.g., at moderate temperatures, the ( 10 1 ¯ 1 ) , ( 11 2 ¯ 0 ) , and ( 10 1 ¯ 0 ) facets govern the free surface, despite the wetting condition at the interfaces.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-5190-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Contact angle ; Crystallography ; Evolution ; Flat surfaces ; Free surfaces ; Heating ; High temperature ; Materials Science ; Nanotechnology ; Nanowires ; Research Article ; Structural stability ; Sublimation ; Temperature requirements ; Thermal stability ; Transmission electron microscopy ; Wetting</subject><ispartof>Nano research, 2023-04, Vol.16 (4), p.5695-5701</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-68608b57c8fd27776f26d81d25ac342bd302dc17257c2aa808f53537494d73703</citedby><cites>FETCH-LOGICAL-c316t-68608b57c8fd27776f26d81d25ac342bd302dc17257c2aa808f53537494d73703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-5190-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-5190-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shangguan, Lei</creatorcontrib><creatorcontrib>Ran, Yating</creatorcontrib><creatorcontrib>Lu, Ziyu</creatorcontrib><creatorcontrib>Gao, Yutian</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>He, Longbing</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><title>Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of practical applications is a critical issue to be figured out. Herein, Te nanowires with diameters ranging from sub-10 to over 80 nm are used as samples to probe into this issue. In situ heating experiments are performed on these Te nanowires using an aberration-corrected transmission electron microscopy combined with a chip-based heating holder. It is found that Te nanowires suffer sublimation at elevated temperatures rather than melting, showing size-dependent sublimation scenarios. The Te nanowires with diameter smaller than 20 nm sublimate below 205 °C, while the larger ones with diameter around 85 nm require a higher temperature of around 225 °C. During sublimation-induced shape evolution, the interfacial wetting equilibrium and crystal orientations play critical roles, leading to the formation of spherical surfaces or featured facets at the free surfaces. A mean contact angle of 107.5° is determined at the C—Te interface when the crystalline Te nanowires stay in a quasi-liquid equilibrium state. However, once the crystalline feature is overwhelming, e.g., at moderate temperatures, the ( 10 1 ¯ 1 ) , ( 11 2 ¯ 0 ) , and ( 10 1 ¯ 0 ) facets govern the free surface, despite the wetting condition at the interfaces.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Contact angle</subject><subject>Crystallography</subject><subject>Evolution</subject><subject>Flat surfaces</subject><subject>Free surfaces</subject><subject>Heating</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Research Article</subject><subject>Structural stability</subject><subject>Sublimation</subject><subject>Temperature requirements</subject><subject>Thermal stability</subject><subject>Transmission electron microscopy</subject><subject>Wetting</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19F8tE16KUOdMPBmXoesOd06uqZL0kn_vRlVvPLc5ECe5z3wInTP6COjVD4FxrnMCOWc5KykpLxAM1aWitA0l78749k1uglhT2nBWaZm6LjegT-YFodoNk3bxBG7Gq8Bd6ZzX42HgE1ncdxB43Hlx4S1rdt60-9GYiEmuenA4jD42lSA4eTaITauwyZiaOFkYvqNcOjBmzikvFt0VZs2wN3PO0efry_rxZKsPt7eF88rUglWRFKogqpNLitVWy6lLGpeWMUsz00lMr6xgnJbMckTwo1RVNW5yIXMysxKIamYo4cpt_fuOECIeu8G36WTmismS8GSnCg2UZV3IXiode-bg_GjZlSfm9VTszo1q8_N6jI5fHJCYrst-L_k_6Vv5e58-w</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Shangguan, Lei</creator><creator>Ran, Yating</creator><creator>Lu, Ziyu</creator><creator>Gao, Yutian</creator><creator>Shi, Lei</creator><creator>He, Longbing</creator><creator>Sun, Litao</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230401</creationdate><title>Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures</title><author>Shangguan, Lei ; Ran, Yating ; Lu, Ziyu ; Gao, Yutian ; Shi, Lei ; He, Longbing ; Sun, Litao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-68608b57c8fd27776f26d81d25ac342bd302dc17257c2aa808f53537494d73703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Contact angle</topic><topic>Crystallography</topic><topic>Evolution</topic><topic>Flat surfaces</topic><topic>Free surfaces</topic><topic>Heating</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Research Article</topic><topic>Structural stability</topic><topic>Sublimation</topic><topic>Temperature requirements</topic><topic>Thermal stability</topic><topic>Transmission electron microscopy</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shangguan, Lei</creatorcontrib><creatorcontrib>Ran, Yating</creatorcontrib><creatorcontrib>Lu, Ziyu</creatorcontrib><creatorcontrib>Gao, Yutian</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>He, Longbing</creatorcontrib><creatorcontrib>Sun, Litao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shangguan, Lei</au><au>Ran, Yating</au><au>Lu, Ziyu</au><au>Gao, Yutian</au><au>Shi, Lei</au><au>He, Longbing</au><au>Sun, Litao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>5695</spage><epage>5701</epage><pages>5695-5701</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of practical applications is a critical issue to be figured out. Herein, Te nanowires with diameters ranging from sub-10 to over 80 nm are used as samples to probe into this issue. In situ heating experiments are performed on these Te nanowires using an aberration-corrected transmission electron microscopy combined with a chip-based heating holder. It is found that Te nanowires suffer sublimation at elevated temperatures rather than melting, showing size-dependent sublimation scenarios. The Te nanowires with diameter smaller than 20 nm sublimate below 205 °C, while the larger ones with diameter around 85 nm require a higher temperature of around 225 °C. During sublimation-induced shape evolution, the interfacial wetting equilibrium and crystal orientations play critical roles, leading to the formation of spherical surfaces or featured facets at the free surfaces. A mean contact angle of 107.5° is determined at the C—Te interface when the crystalline Te nanowires stay in a quasi-liquid equilibrium state. However, once the crystalline feature is overwhelming, e.g., at moderate temperatures, the ( 10 1 ¯ 1 ) , ( 11 2 ¯ 0 ) , and ( 10 1 ¯ 0 ) facets govern the free surface, despite the wetting condition at the interfaces.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-5190-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2023-04, Vol.16 (4), p.5695-5701
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2817931172
source SpringerNature Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Contact angle
Crystallography
Evolution
Flat surfaces
Free surfaces
Heating
High temperature
Materials Science
Nanotechnology
Nanowires
Research Article
Structural stability
Sublimation
Temperature requirements
Thermal stability
Transmission electron microscopy
Wetting
title Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20Te%20nanowires%20and%20their%20crystallography-determined%20surface%20evolution%20at%20elevated%20temperatures&rft.jtitle=Nano%20research&rft.au=Shangguan,%20Lei&rft.date=2023-04-01&rft.volume=16&rft.issue=4&rft.spage=5695&rft.epage=5701&rft.pages=5695-5701&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-5190-9&rft_dat=%3Cproquest_cross%3E2817931172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817931172&rft_id=info:pmid/&rfr_iscdi=true