An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors
Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones' embedded sensors are emerging. Nonetheless, the methods carried out...
Gespeichert in:
Veröffentlicht in: | International journal of computers & applications 2023-04, Vol.45 (4), p.323-336 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 4 |
container_start_page | 323 |
container_title | International journal of computers & applications |
container_volume | 45 |
creator | Djemili, Rafik Zamouche, Merouane |
description | Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones' embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature. |
doi_str_mv | 10.1080/1206212X.2023.2198785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817872534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817872534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-96b19f3a5137387bcc5fb55105a2b8f196309592597a3decb0036f73027cdf223</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIARcT82lmWR2luINCm4U3IVMJmlTpsmYZJS-vSmtW1fnLP7LOR8AtxjNMBLoHhNUE0w-ZwQROiO4EVywMzDBDWEVR3x-XvaiqQ6iS3CV0hahOSe1mIDtwkNjrdPO-Aw7YwbYGxW98-uqVcl0UA1DDEpvoA0Rbsad8lDp7L5d3sNodFh7l13wcEzFA9NOxTxsgjfQeROzUz1MxqcQ0zW4sKpP5uY0p-Dj6fF9-VKt3p5fl4tVpQmjuWrqFjeWKoYpp4K3WjPbMoYRU6QVFjc1RQ0rrzVc0c7oFiFaW04R4bqzhNApuDvmlru_RpOy3IYx-lIpicBc8FIzLyp2VOkYUorGyiG6cvxeYiQPWOUfVnnAKk9Yi-_h6HO-ANmpnxD7Tma170O0UXntkqT_R_wCsJ6AJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817872534</pqid></control><display><type>article</type><title>An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors</title><source>Taylor & Francis Journals Complete</source><creator>Djemili, Rafik ; Zamouche, Merouane</creator><creatorcontrib>Djemili, Rafik ; Zamouche, Merouane</creatorcontrib><description>Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones' embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature.</description><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.1080/1206212X.2023.2198785</identifier><language>eng</language><publisher>Calgary: Taylor & Francis</publisher><subject>Accelerometers ; Artificial neural networks ; Classification ; convolutional neural network (CNN) ; deep learnin ; Deep learning ; eatures ; Embedded sensors ; handcrafted features ; Human activity recognition ; Human activity recognition (HAR) ; Inertial sensing devices ; inertial signals ; Machine learning ; Multilayer perceptrons ; Neural networks ; smartphone accelerometers ; Smartphones</subject><ispartof>International journal of computers & applications, 2023-04, Vol.45 (4), p.323-336</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-96b19f3a5137387bcc5fb55105a2b8f196309592597a3decb0036f73027cdf223</citedby><cites>FETCH-LOGICAL-c253t-96b19f3a5137387bcc5fb55105a2b8f196309592597a3decb0036f73027cdf223</cites><orcidid>0000-0003-3476-567X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1206212X.2023.2198785$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1206212X.2023.2198785$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Djemili, Rafik</creatorcontrib><creatorcontrib>Zamouche, Merouane</creatorcontrib><title>An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors</title><title>International journal of computers & applications</title><description>Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones' embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature.</description><subject>Accelerometers</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>convolutional neural network (CNN)</subject><subject>deep learnin</subject><subject>Deep learning</subject><subject>eatures</subject><subject>Embedded sensors</subject><subject>handcrafted features</subject><subject>Human activity recognition</subject><subject>Human activity recognition (HAR)</subject><subject>Inertial sensing devices</subject><subject>inertial signals</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>smartphone accelerometers</subject><subject>Smartphones</subject><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKuPIARcT82lmWR2luINCm4U3IVMJmlTpsmYZJS-vSmtW1fnLP7LOR8AtxjNMBLoHhNUE0w-ZwQROiO4EVywMzDBDWEVR3x-XvaiqQ6iS3CV0hahOSe1mIDtwkNjrdPO-Aw7YwbYGxW98-uqVcl0UA1DDEpvoA0Rbsad8lDp7L5d3sNodFh7l13wcEzFA9NOxTxsgjfQeROzUz1MxqcQ0zW4sKpP5uY0p-Dj6fF9-VKt3p5fl4tVpQmjuWrqFjeWKoYpp4K3WjPbMoYRU6QVFjc1RQ0rrzVc0c7oFiFaW04R4bqzhNApuDvmlru_RpOy3IYx-lIpicBc8FIzLyp2VOkYUorGyiG6cvxeYiQPWOUfVnnAKk9Yi-_h6HO-ANmpnxD7Tma170O0UXntkqT_R_wCsJ6AJw</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Djemili, Rafik</creator><creator>Zamouche, Merouane</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3476-567X</orcidid></search><sort><creationdate>20230403</creationdate><title>An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors</title><author>Djemili, Rafik ; Zamouche, Merouane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-96b19f3a5137387bcc5fb55105a2b8f196309592597a3decb0036f73027cdf223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>convolutional neural network (CNN)</topic><topic>deep learnin</topic><topic>Deep learning</topic><topic>eatures</topic><topic>Embedded sensors</topic><topic>handcrafted features</topic><topic>Human activity recognition</topic><topic>Human activity recognition (HAR)</topic><topic>Inertial sensing devices</topic><topic>inertial signals</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>smartphone accelerometers</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djemili, Rafik</creatorcontrib><creatorcontrib>Zamouche, Merouane</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computers & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djemili, Rafik</au><au>Zamouche, Merouane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors</atitle><jtitle>International journal of computers & applications</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>45</volume><issue>4</issue><spage>323</spage><epage>336</epage><pages>323-336</pages><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones' embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature.</abstract><cop>Calgary</cop><pub>Taylor & Francis</pub><doi>10.1080/1206212X.2023.2198785</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3476-567X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1206-212X |
ispartof | International journal of computers & applications, 2023-04, Vol.45 (4), p.323-336 |
issn | 1206-212X 1925-7074 |
language | eng |
recordid | cdi_proquest_journals_2817872534 |
source | Taylor & Francis Journals Complete |
subjects | Accelerometers Artificial neural networks Classification convolutional neural network (CNN) deep learnin Deep learning eatures Embedded sensors handcrafted features Human activity recognition Human activity recognition (HAR) Inertial sensing devices inertial signals Machine learning Multilayer perceptrons Neural networks smartphone accelerometers Smartphones |
title | An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20deep%20learning-based%20approach%20for%20human%20activity%20recognition%20using%20smartphone%20inertial%20sensors&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Djemili,%20Rafik&rft.date=2023-04-03&rft.volume=45&rft.issue=4&rft.spage=323&rft.epage=336&rft.pages=323-336&rft.issn=1206-212X&rft.eissn=1925-7074&rft_id=info:doi/10.1080/1206212X.2023.2198785&rft_dat=%3Cproquest_cross%3E2817872534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817872534&rft_id=info:pmid/&rfr_iscdi=true |