DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training

In this work, we propose algorithms and methods that enable learning dexterous object manipulation using simulated one- or two-armed robots equipped with multi-fingered hand end-effectors. Using a parallel GPU-accelerated physics simulator (Isaac Gym), we implement challenging tasks for these robots...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Petrenko, Aleksei, Allshire, Arthur, State, Gavriel, Handa, Ankur, Makoviychuk, Viktor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Petrenko, Aleksei
Allshire, Arthur
State, Gavriel
Handa, Ankur
Makoviychuk, Viktor
description In this work, we propose algorithms and methods that enable learning dexterous object manipulation using simulated one- or two-armed robots equipped with multi-fingered hand end-effectors. Using a parallel GPU-accelerated physics simulator (Isaac Gym), we implement challenging tasks for these robots, including regrasping, grasp-and-throw, and object reorientation. To solve these problems we introduce a decentralized Population-Based Training (PBT) algorithm that allows us to massively amplify the exploration capabilities of deep reinforcement learning. We find that this method significantly outperforms regular end-to-end learning and is able to discover robust control policies in challenging tasks. Video demonstrations of learned behaviors and the code can be found at https://sites.google.com/view/dexpbt
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2817859480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817859480</sourcerecordid><originalsourceid>FETCH-proquest_journals_28178594803</originalsourceid><addsrcrecordid>eNqNjMsKgkAYRocgSMp3-KG1MI6aU7vsgpsg0G3IkGON6IzNhertcxGtW31wzuGbII9EURjQmJAZ8o1pMcZklZIkiTx02fPXOSs3UFxZJ-QN3AAjslwrZ-DEpBhcx6xQEhqlIWeyDra6h-JtLO8NPIW9w1n9oowZXkOpmZDj2wJNG9YZ7n93jpbHQ7nLg0Grh-PGVq1yWo6qIjRMabKOKY7-qz6ox0NO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817859480</pqid></control><display><type>article</type><title>DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training</title><source>Free E- Journals</source><creator>Petrenko, Aleksei ; Allshire, Arthur ; State, Gavriel ; Handa, Ankur ; Makoviychuk, Viktor</creator><creatorcontrib>Petrenko, Aleksei ; Allshire, Arthur ; State, Gavriel ; Handa, Ankur ; Makoviychuk, Viktor</creatorcontrib><description>In this work, we propose algorithms and methods that enable learning dexterous object manipulation using simulated one- or two-armed robots equipped with multi-fingered hand end-effectors. Using a parallel GPU-accelerated physics simulator (Isaac Gym), we implement challenging tasks for these robots, including regrasping, grasp-and-throw, and object reorientation. To solve these problems we introduce a decentralized Population-Based Training (PBT) algorithm that allows us to massively amplify the exploration capabilities of deep reinforcement learning. We find that this method significantly outperforms regular end-to-end learning and is able to discover robust control policies in challenging tasks. Video demonstrations of learned behaviors and the code can be found at https://sites.google.com/view/dexpbt</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; End effectors ; Grasping (robotics) ; Robots ; Robust control ; Training</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Petrenko, Aleksei</creatorcontrib><creatorcontrib>Allshire, Arthur</creatorcontrib><creatorcontrib>State, Gavriel</creatorcontrib><creatorcontrib>Handa, Ankur</creatorcontrib><creatorcontrib>Makoviychuk, Viktor</creatorcontrib><title>DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training</title><title>arXiv.org</title><description>In this work, we propose algorithms and methods that enable learning dexterous object manipulation using simulated one- or two-armed robots equipped with multi-fingered hand end-effectors. Using a parallel GPU-accelerated physics simulator (Isaac Gym), we implement challenging tasks for these robots, including regrasping, grasp-and-throw, and object reorientation. To solve these problems we introduce a decentralized Population-Based Training (PBT) algorithm that allows us to massively amplify the exploration capabilities of deep reinforcement learning. We find that this method significantly outperforms regular end-to-end learning and is able to discover robust control policies in challenging tasks. Video demonstrations of learned behaviors and the code can be found at https://sites.google.com/view/dexpbt</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>End effectors</subject><subject>Grasping (robotics)</subject><subject>Robots</subject><subject>Robust control</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsKgkAYRocgSMp3-KG1MI6aU7vsgpsg0G3IkGON6IzNhertcxGtW31wzuGbII9EURjQmJAZ8o1pMcZklZIkiTx02fPXOSs3UFxZJ-QN3AAjslwrZ-DEpBhcx6xQEhqlIWeyDra6h-JtLO8NPIW9w1n9oowZXkOpmZDj2wJNG9YZ7n93jpbHQ7nLg0Grh-PGVq1yWo6qIjRMabKOKY7-qz6ox0NO</recordid><startdate>20230520</startdate><enddate>20230520</enddate><creator>Petrenko, Aleksei</creator><creator>Allshire, Arthur</creator><creator>State, Gavriel</creator><creator>Handa, Ankur</creator><creator>Makoviychuk, Viktor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230520</creationdate><title>DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training</title><author>Petrenko, Aleksei ; Allshire, Arthur ; State, Gavriel ; Handa, Ankur ; Makoviychuk, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28178594803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>End effectors</topic><topic>Grasping (robotics)</topic><topic>Robots</topic><topic>Robust control</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Petrenko, Aleksei</creatorcontrib><creatorcontrib>Allshire, Arthur</creatorcontrib><creatorcontrib>State, Gavriel</creatorcontrib><creatorcontrib>Handa, Ankur</creatorcontrib><creatorcontrib>Makoviychuk, Viktor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrenko, Aleksei</au><au>Allshire, Arthur</au><au>State, Gavriel</au><au>Handa, Ankur</au><au>Makoviychuk, Viktor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training</atitle><jtitle>arXiv.org</jtitle><date>2023-05-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this work, we propose algorithms and methods that enable learning dexterous object manipulation using simulated one- or two-armed robots equipped with multi-fingered hand end-effectors. Using a parallel GPU-accelerated physics simulator (Isaac Gym), we implement challenging tasks for these robots, including regrasping, grasp-and-throw, and object reorientation. To solve these problems we introduce a decentralized Population-Based Training (PBT) algorithm that allows us to massively amplify the exploration capabilities of deep reinforcement learning. We find that this method significantly outperforms regular end-to-end learning and is able to discover robust control policies in challenging tasks. Video demonstrations of learned behaviors and the code can be found at https://sites.google.com/view/dexpbt</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2817859480
source Free E- Journals
subjects Algorithms
Deep learning
End effectors
Grasping (robotics)
Robots
Robust control
Training
title DexPBT: Scaling up Dexterous Manipulation for Hand-Arm Systems with Population Based Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DexPBT:%20Scaling%20up%20Dexterous%20Manipulation%20for%20Hand-Arm%20Systems%20with%20Population%20Based%20Training&rft.jtitle=arXiv.org&rft.au=Petrenko,%20Aleksei&rft.date=2023-05-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2817859480%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817859480&rft_id=info:pmid/&rfr_iscdi=true