Electron heat transport in low-rank lignite: combining experimental and computational methods

Coal fire combustion has been known for a long time to be a complicated physical and chemical process, and finding hidden coal fires has always been a challenge. With the arrival of an advanced quantum detection method, such fires can be accurately identified. Before applying the method to detect hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2023-06, Vol.148 (11), p.4759-4768
Hauptverfasser: Liu, Jing-Wen, Xiao, Yang, Wang, Zhen-Ping, Li, Qing-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4768
container_issue 11
container_start_page 4759
container_title Journal of thermal analysis and calorimetry
container_volume 148
creator Liu, Jing-Wen
Xiao, Yang
Wang, Zhen-Ping
Li, Qing-Wei
description Coal fire combustion has been known for a long time to be a complicated physical and chemical process, and finding hidden coal fires has always been a challenge. With the arrival of an advanced quantum detection method, such fires can be accurately identified. Before applying the method to detect hidden coal fires, researchers must develop a better understanding of the transport properties of heat carriers in coal. An examination of a lignite sample taken from a typical coal fire region (Tunbao, Xinjiang, China) was conducted using experimental and computational methods. The molecular structure of Tunbao coal was clarified using methods such as 13 C-NMR, XPS, and elemental analysis. A model of Tunbao coal’s molecular structure was generated, and its chemical formula was C 311 H 209 N 3 O 68 . Moreover, ab initio molecular dynamics was used to compute the heat carriers in coal molecules. As revealed by calculations, this coal is a semiconductor with metallic characteristics and is capable of transporting electrons. Naphthalene and pyrrole contribute to this metallicity, and coals with larger amounts of naphthalene and pyrrole may have stronger electrical conductivity. In accordance with the AIMD results, when the temperature rose, the electron transport of coal molecules became more frequent and powerful, resulting in increased electrical conductivity.
doi_str_mv 10.1007/s10973-023-12032-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2817626370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750283673</galeid><sourcerecordid>A750283673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a4c3e4007662277137afa72ff22e14cc92b47fd7d8f0d6d47c81891f7dd4fbce3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFb_gKcFTx625mO72fVWil8gCH4cJaTJZJu6TdYkxfrvja4gvUgOM5k8b5iZN8tOMZpghNhFwKhhtECEFpggSopyLxvhaV0XpCHVfsppyis8RYfZUQgrhFDTIDzKXq86kNE7my9BxDx6YUPvfMyNzTv3UaT7W96Z1poIl7l064WxxrY5bHvwZg02ii4XVn0_9ZsoonE2VdYQl06F4-xAiy7AyW8cZy_XV8_z2-L-4eZuPrsvJG1ILEQpKZRpjqoihDFMmdCCEa0JAVxK2ZBFybRiqtZIVapkssZ1gzVTqtQLCXScnQ3_9t69byBEvnIbnxoJnNSYVaSiDCVqMlCt6IAbq10aV6ajYG2ks6BNqs_YFJGaVowmwfmOIDERtrEVmxD43dPjLksGVnoXggfN-7Qf4T85RvzbIz54xJNH_McjXiYRHUQhwbYF_9f3P6ov4bCUhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817626370</pqid></control><display><type>article</type><title>Electron heat transport in low-rank lignite: combining experimental and computational methods</title><source>SpringerLink (Online service)</source><creator>Liu, Jing-Wen ; Xiao, Yang ; Wang, Zhen-Ping ; Li, Qing-Wei</creator><creatorcontrib>Liu, Jing-Wen ; Xiao, Yang ; Wang, Zhen-Ping ; Li, Qing-Wei</creatorcontrib><description>Coal fire combustion has been known for a long time to be a complicated physical and chemical process, and finding hidden coal fires has always been a challenge. With the arrival of an advanced quantum detection method, such fires can be accurately identified. Before applying the method to detect hidden coal fires, researchers must develop a better understanding of the transport properties of heat carriers in coal. An examination of a lignite sample taken from a typical coal fire region (Tunbao, Xinjiang, China) was conducted using experimental and computational methods. The molecular structure of Tunbao coal was clarified using methods such as 13 C-NMR, XPS, and elemental analysis. A model of Tunbao coal’s molecular structure was generated, and its chemical formula was C 311 H 209 N 3 O 68 . Moreover, ab initio molecular dynamics was used to compute the heat carriers in coal molecules. As revealed by calculations, this coal is a semiconductor with metallic characteristics and is capable of transporting electrons. Naphthalene and pyrrole contribute to this metallicity, and coals with larger amounts of naphthalene and pyrrole may have stronger electrical conductivity. In accordance with the AIMD results, when the temperature rose, the electron transport of coal molecules became more frequent and powerful, resulting in increased electrical conductivity.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-023-12032-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Coal ; Coal transport ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Electron transport ; Fires ; Inorganic Chemistry ; Lignite ; Measurement Science and Instrumentation ; Metallicity ; Methods ; Molecular dynamics ; Molecular structure ; Naphthalene ; NMR ; Nuclear magnetic resonance ; Physical Chemistry ; Polymer Sciences ; Rankings ; Transport properties ; X ray photoelectron spectroscopy</subject><ispartof>Journal of thermal analysis and calorimetry, 2023-06, Vol.148 (11), p.4759-4768</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a4c3e4007662277137afa72ff22e14cc92b47fd7d8f0d6d47c81891f7dd4fbce3</citedby><cites>FETCH-LOGICAL-c392t-a4c3e4007662277137afa72ff22e14cc92b47fd7d8f0d6d47c81891f7dd4fbce3</cites><orcidid>0000-0002-3960-9708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-023-12032-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-023-12032-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Jing-Wen</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wang, Zhen-Ping</creatorcontrib><creatorcontrib>Li, Qing-Wei</creatorcontrib><title>Electron heat transport in low-rank lignite: combining experimental and computational methods</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Coal fire combustion has been known for a long time to be a complicated physical and chemical process, and finding hidden coal fires has always been a challenge. With the arrival of an advanced quantum detection method, such fires can be accurately identified. Before applying the method to detect hidden coal fires, researchers must develop a better understanding of the transport properties of heat carriers in coal. An examination of a lignite sample taken from a typical coal fire region (Tunbao, Xinjiang, China) was conducted using experimental and computational methods. The molecular structure of Tunbao coal was clarified using methods such as 13 C-NMR, XPS, and elemental analysis. A model of Tunbao coal’s molecular structure was generated, and its chemical formula was C 311 H 209 N 3 O 68 . Moreover, ab initio molecular dynamics was used to compute the heat carriers in coal molecules. As revealed by calculations, this coal is a semiconductor with metallic characteristics and is capable of transporting electrons. Naphthalene and pyrrole contribute to this metallicity, and coals with larger amounts of naphthalene and pyrrole may have stronger electrical conductivity. In accordance with the AIMD results, when the temperature rose, the electron transport of coal molecules became more frequent and powerful, resulting in increased electrical conductivity.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coal</subject><subject>Coal transport</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Fires</subject><subject>Inorganic Chemistry</subject><subject>Lignite</subject><subject>Measurement Science and Instrumentation</subject><subject>Metallicity</subject><subject>Methods</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Naphthalene</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rankings</subject><subject>Transport properties</subject><subject>X ray photoelectron spectroscopy</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFb_gKcFTx625mO72fVWil8gCH4cJaTJZJu6TdYkxfrvja4gvUgOM5k8b5iZN8tOMZpghNhFwKhhtECEFpggSopyLxvhaV0XpCHVfsppyis8RYfZUQgrhFDTIDzKXq86kNE7my9BxDx6YUPvfMyNzTv3UaT7W96Z1poIl7l064WxxrY5bHvwZg02ii4XVn0_9ZsoonE2VdYQl06F4-xAiy7AyW8cZy_XV8_z2-L-4eZuPrsvJG1ILEQpKZRpjqoihDFMmdCCEa0JAVxK2ZBFybRiqtZIVapkssZ1gzVTqtQLCXScnQ3_9t69byBEvnIbnxoJnNSYVaSiDCVqMlCt6IAbq10aV6ajYG2ks6BNqs_YFJGaVowmwfmOIDERtrEVmxD43dPjLksGVnoXggfN-7Qf4T85RvzbIz54xJNH_McjXiYRHUQhwbYF_9f3P6ov4bCUhg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Liu, Jing-Wen</creator><creator>Xiao, Yang</creator><creator>Wang, Zhen-Ping</creator><creator>Li, Qing-Wei</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-3960-9708</orcidid></search><sort><creationdate>20230601</creationdate><title>Electron heat transport in low-rank lignite: combining experimental and computational methods</title><author>Liu, Jing-Wen ; Xiao, Yang ; Wang, Zhen-Ping ; Li, Qing-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a4c3e4007662277137afa72ff22e14cc92b47fd7d8f0d6d47c81891f7dd4fbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coal</topic><topic>Coal transport</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Fires</topic><topic>Inorganic Chemistry</topic><topic>Lignite</topic><topic>Measurement Science and Instrumentation</topic><topic>Metallicity</topic><topic>Methods</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Naphthalene</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rankings</topic><topic>Transport properties</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jing-Wen</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wang, Zhen-Ping</creatorcontrib><creatorcontrib>Li, Qing-Wei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jing-Wen</au><au>Xiao, Yang</au><au>Wang, Zhen-Ping</au><au>Li, Qing-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron heat transport in low-rank lignite: combining experimental and computational methods</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>148</volume><issue>11</issue><spage>4759</spage><epage>4768</epage><pages>4759-4768</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Coal fire combustion has been known for a long time to be a complicated physical and chemical process, and finding hidden coal fires has always been a challenge. With the arrival of an advanced quantum detection method, such fires can be accurately identified. Before applying the method to detect hidden coal fires, researchers must develop a better understanding of the transport properties of heat carriers in coal. An examination of a lignite sample taken from a typical coal fire region (Tunbao, Xinjiang, China) was conducted using experimental and computational methods. The molecular structure of Tunbao coal was clarified using methods such as 13 C-NMR, XPS, and elemental analysis. A model of Tunbao coal’s molecular structure was generated, and its chemical formula was C 311 H 209 N 3 O 68 . Moreover, ab initio molecular dynamics was used to compute the heat carriers in coal molecules. As revealed by calculations, this coal is a semiconductor with metallic characteristics and is capable of transporting electrons. Naphthalene and pyrrole contribute to this metallicity, and coals with larger amounts of naphthalene and pyrrole may have stronger electrical conductivity. In accordance with the AIMD results, when the temperature rose, the electron transport of coal molecules became more frequent and powerful, resulting in increased electrical conductivity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-023-12032-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3960-9708</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2023-06, Vol.148 (11), p.4759-4768
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2817626370
source SpringerLink (Online service)
subjects Analysis
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Coal
Coal transport
Electric properties
Electrical conductivity
Electrical resistivity
Electron transport
Fires
Inorganic Chemistry
Lignite
Measurement Science and Instrumentation
Metallicity
Methods
Molecular dynamics
Molecular structure
Naphthalene
NMR
Nuclear magnetic resonance
Physical Chemistry
Polymer Sciences
Rankings
Transport properties
X ray photoelectron spectroscopy
title Electron heat transport in low-rank lignite: combining experimental and computational methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20heat%20transport%20in%20low-rank%20lignite:%20combining%20experimental%20and%20computational%20methods&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Liu,%20Jing-Wen&rft.date=2023-06-01&rft.volume=148&rft.issue=11&rft.spage=4759&rft.epage=4768&rft.pages=4759-4768&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-023-12032-4&rft_dat=%3Cgale_proqu%3EA750283673%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817626370&rft_id=info:pmid/&rft_galeid=A750283673&rfr_iscdi=true