Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order

In this paper, we consider the inverse problem of determining the source function for a mixed-type equation with a positive elliptic operator. The existence and uniqueness of the solution of the posed inverse problem are proved. And also a generalized solution of the problem is introduced and the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-02, Vol.44 (2), p.533-541
Hauptverfasser: Ashurov, R. R., Murzambetova, M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 2
container_start_page 533
container_title Lobachevskii journal of mathematics
container_volume 44
creator Ashurov, R. R.
Murzambetova, M. B.
description In this paper, we consider the inverse problem of determining the source function for a mixed-type equation with a positive elliptic operator. The existence and uniqueness of the solution of the posed inverse problem are proved. And also a generalized solution of the problem is introduced and the stability of such a solution is proved. At the end of the paper, a mixed-type equation with a non-negative elliptic operator is considered. It is proved that the corresponding inverse problem also has a unique solution, although, as is known, the forward problem for such an equation has more than one solution.
doi_str_mv 10.1134/S1995080223020105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817626070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817626070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-55b480bad92d92833c0a8503f4089e30f26fdd49561bf7be57ece880e6f4971c3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9HZTbLZPZZStVCpYD2H_JnVlDRJZ7dqv71bKngQYWAG3u_NDI-xawG3QsTJ3YswJgUNUsYgQUB6wkZCCx0Zo-RpmIMcHfRzduHcGgKolBqx1bz7QHLIn6kvW9xw2xN_ar6wjvx-QD7b7grf9B3_bPw7Lzo-a9tm8E3FlwNS4QPdWz6hsvFU0J4vqUa6ZGe2aB1e_fQxe72fraaP0WL5MJ9OFlEllfZRmpaJhrKojQyl47iCQqcQ2wS0wRisVLauE5MqUdqsxDTDCrUGVDYxmajiMbs57h2o3-7Q-Xzd76gLJ3OpRaakggwCJY5URb1zhDYfqNmEZ3MB-SG8_E94wSOPHhfY7g3pd_P_pm8-4W_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817626070</pqid></control><display><type>article</type><title>Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ashurov, R. R. ; Murzambetova, M. B.</creator><creatorcontrib>Ashurov, R. R. ; Murzambetova, M. B.</creatorcontrib><description>In this paper, we consider the inverse problem of determining the source function for a mixed-type equation with a positive elliptic operator. The existence and uniqueness of the solution of the posed inverse problem are proved. And also a generalized solution of the problem is introduced and the stability of such a solution is proved. At the end of the paper, a mixed-type equation with a non-negative elliptic operator is considered. It is proved that the corresponding inverse problem also has a unique solution, although, as is known, the forward problem for such an equation has more than one solution.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223020105</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Forward problem ; Geometry ; Inverse problems ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2023-02, Vol.44 (2), p.533-541</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-55b480bad92d92833c0a8503f4089e30f26fdd49561bf7be57ece880e6f4971c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223020105$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223020105$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Ashurov, R. R.</creatorcontrib><creatorcontrib>Murzambetova, M. B.</creatorcontrib><title>Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we consider the inverse problem of determining the source function for a mixed-type equation with a positive elliptic operator. The existence and uniqueness of the solution of the posed inverse problem are proved. And also a generalized solution of the problem is introduced and the stability of such a solution is proved. At the end of the paper, a mixed-type equation with a non-negative elliptic operator is considered. It is proved that the corresponding inverse problem also has a unique solution, although, as is known, the forward problem for such an equation has more than one solution.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Forward problem</subject><subject>Geometry</subject><subject>Inverse problems</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9HZTbLZPZZStVCpYD2H_JnVlDRJZ7dqv71bKngQYWAG3u_NDI-xawG3QsTJ3YswJgUNUsYgQUB6wkZCCx0Zo-RpmIMcHfRzduHcGgKolBqx1bz7QHLIn6kvW9xw2xN_ar6wjvx-QD7b7grf9B3_bPw7Lzo-a9tm8E3FlwNS4QPdWz6hsvFU0J4vqUa6ZGe2aB1e_fQxe72fraaP0WL5MJ9OFlEllfZRmpaJhrKojQyl47iCQqcQ2wS0wRisVLauE5MqUdqsxDTDCrUGVDYxmajiMbs57h2o3-7Q-Xzd76gLJ3OpRaakggwCJY5URb1zhDYfqNmEZ3MB-SG8_E94wSOPHhfY7g3pd_P_pm8-4W_-</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ashurov, R. R.</creator><creator>Murzambetova, M. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order</title><author>Ashurov, R. R. ; Murzambetova, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-55b480bad92d92833c0a8503f4089e30f26fdd49561bf7be57ece880e6f4971c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Forward problem</topic><topic>Geometry</topic><topic>Inverse problems</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashurov, R. R.</creatorcontrib><creatorcontrib>Murzambetova, M. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashurov, R. R.</au><au>Murzambetova, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>44</volume><issue>2</issue><spage>533</spage><epage>541</epage><pages>533-541</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we consider the inverse problem of determining the source function for a mixed-type equation with a positive elliptic operator. The existence and uniqueness of the solution of the posed inverse problem are proved. And also a generalized solution of the problem is introduced and the stability of such a solution is proved. At the end of the paper, a mixed-type equation with a non-negative elliptic operator is considered. It is proved that the corresponding inverse problem also has a unique solution, although, as is known, the forward problem for such an equation has more than one solution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223020105</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-02, Vol.44 (2), p.533-541
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2817626070
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Forward problem
Geometry
Inverse problems
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Problem%20for%20Mixed-type%20Equation%20with%20an%20Elliptic%20Operator%20of%20Arbitrary%20Order&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Ashurov,%20R.%20R.&rft.date=2023-02-01&rft.volume=44&rft.issue=2&rft.spage=533&rft.epage=541&rft.pages=533-541&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223020105&rft_dat=%3Cproquest_cross%3E2817626070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817626070&rft_id=info:pmid/&rfr_iscdi=true