A Heron triangle and a Diophantine equation

Given any positive integer n , it is well known that there always exists a triangle with rational sides a ,  b and c such that the area of the triangle is n . For any pair of primes ( p ,  q ) such that p ≢ 1 (mod 8) and p 2 + 1 = 2 q , we look into the possibility of the existence of triangles havi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2023-06, Vol.86 (2), p.530-537
Hauptverfasser: Ghale, Vinodkumar, Das, Shamik, Chakraborty, Debopam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given any positive integer n , it is well known that there always exists a triangle with rational sides a ,  b and c such that the area of the triangle is n . For any pair of primes ( p ,  q ) such that p ≢ 1 (mod 8) and p 2 + 1 = 2 q , we look into the possibility of the existence of triangles having rational sides with p as the area and p - 1 as tan θ 2 for one of the angles θ . We also discuss the relation of such triangles with the solutions of certain Diophantine equations.
ISSN:0031-5303
1588-2829
DOI:10.1007/s10998-022-00491-5