On the Second Eigenvalue of Random Bipartite Biregular Graphs

We consider the spectral gap of a uniformly chosen random ( d 1 , d 2 ) -biregular bipartite graph G with | V 1 | = n , | V 2 | = m , where d 1 , d 2 could possibly grow with n and m . Let A be the adjacency matrix of G . Under the assumption that d 1 ≥ d 2 and d 2 = O ( n 2 / 3 ) , we show that λ 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2023-06, Vol.36 (2), p.1269-1303
1. Verfasser: Zhu, Yizhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1303
container_issue 2
container_start_page 1269
container_title Journal of theoretical probability
container_volume 36
creator Zhu, Yizhe
description We consider the spectral gap of a uniformly chosen random ( d 1 , d 2 ) -biregular bipartite graph G with | V 1 | = n , | V 2 | = m , where d 1 , d 2 could possibly grow with n and m . Let A be the adjacency matrix of G . Under the assumption that d 1 ≥ d 2 and d 2 = O ( n 2 / 3 ) , we show that λ 2 ( A ) = O ( d 1 ) with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d -regular digraph is O ( d ) for 1 ≤ d ≤ n / 2 with high probability. Assuming d 2 is fixed and d 1 = O ( n 2 ) , we further prove that for a random ( d 1 , d 2 ) -biregular bipartite graph, | λ i 2 ( A ) - d 1 | = O ( d 1 ) for all 2 ≤ i ≤ n + m - 1 with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d -regular graphs and several new switching operations we define for random bipartite biregular graphs.
doi_str_mv 10.1007/s10959-022-01190-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817624141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817624141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-52772661a017402491ffe9c451ab1568c3b168eb4993491911e69dff83e2d0893</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKcFz9GZJPsxBw9aahUKBT_OId1N2i3t7prsCv73Rlfw5mkG5r03jx9jlwjXCJDfBARKiYMQHBAJOByxCaa54CQkHLMJFKQ4FQpO2VkIOwAgApiw21WT9FubvNiybapkXm9s82H2g01alzybpmoPyX3dGd_XvY2bt5thb3yy8KbbhnN24sw-2IvfOWVvD_PX2SNfrhZPs7slLyVSz1OR5yLL0ADmCoQidM5SqVI0a0yzopRrzAq7VkQyHgnRZlQ5V0grqthcTtnVmNv59n2wode7dvBNfKlFgXkmFCqMKjGqSt-G4K3Tna8Pxn9qBP2NSY-YdMSkfzBpiCY5mkIUNxvr_6L_cX0Be8Znyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817624141</pqid></control><display><type>article</type><title>On the Second Eigenvalue of Random Bipartite Biregular Graphs</title><source>SpringerLink Journals</source><creator>Zhu, Yizhe</creator><creatorcontrib>Zhu, Yizhe</creatorcontrib><description>We consider the spectral gap of a uniformly chosen random ( d 1 , d 2 ) -biregular bipartite graph G with | V 1 | = n , | V 2 | = m , where d 1 , d 2 could possibly grow with n and m . Let A be the adjacency matrix of G . Under the assumption that d 1 ≥ d 2 and d 2 = O ( n 2 / 3 ) , we show that λ 2 ( A ) = O ( d 1 ) with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d -regular digraph is O ( d ) for 1 ≤ d ≤ n / 2 with high probability. Assuming d 2 is fixed and d 1 = O ( n 2 ) , we further prove that for a random ( d 1 , d 2 ) -biregular bipartite graph, | λ i 2 ( A ) - d 1 | = O ( d 1 ) for all 2 ≤ i ≤ n + m - 1 with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d -regular graphs and several new switching operations we define for random bipartite biregular graphs.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-022-01190-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Eigenvalues ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Journal of theoretical probability, 2023-06, Vol.36 (2), p.1269-1303</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-52772661a017402491ffe9c451ab1568c3b168eb4993491911e69dff83e2d0893</citedby><cites>FETCH-LOGICAL-c319t-52772661a017402491ffe9c451ab1568c3b168eb4993491911e69dff83e2d0893</cites><orcidid>0000-0002-5665-0374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-022-01190-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-022-01190-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Yizhe</creatorcontrib><title>On the Second Eigenvalue of Random Bipartite Biregular Graphs</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We consider the spectral gap of a uniformly chosen random ( d 1 , d 2 ) -biregular bipartite graph G with | V 1 | = n , | V 2 | = m , where d 1 , d 2 could possibly grow with n and m . Let A be the adjacency matrix of G . Under the assumption that d 1 ≥ d 2 and d 2 = O ( n 2 / 3 ) , we show that λ 2 ( A ) = O ( d 1 ) with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d -regular digraph is O ( d ) for 1 ≤ d ≤ n / 2 with high probability. Assuming d 2 is fixed and d 1 = O ( n 2 ) , we further prove that for a random ( d 1 , d 2 ) -biregular bipartite graph, | λ i 2 ( A ) - d 1 | = O ( d 1 ) for all 2 ≤ i ≤ n + m - 1 with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d -regular graphs and several new switching operations we define for random bipartite biregular graphs.</description><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gKcFz9GZJPsxBw9aahUKBT_OId1N2i3t7prsCv73Rlfw5mkG5r03jx9jlwjXCJDfBARKiYMQHBAJOByxCaa54CQkHLMJFKQ4FQpO2VkIOwAgApiw21WT9FubvNiybapkXm9s82H2g01alzybpmoPyX3dGd_XvY2bt5thb3yy8KbbhnN24sw-2IvfOWVvD_PX2SNfrhZPs7slLyVSz1OR5yLL0ADmCoQidM5SqVI0a0yzopRrzAq7VkQyHgnRZlQ5V0grqthcTtnVmNv59n2wode7dvBNfKlFgXkmFCqMKjGqSt-G4K3Tna8Pxn9qBP2NSY-YdMSkfzBpiCY5mkIUNxvr_6L_cX0Be8Znyw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhu, Yizhe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5665-0374</orcidid></search><sort><creationdate>20230601</creationdate><title>On the Second Eigenvalue of Random Bipartite Biregular Graphs</title><author>Zhu, Yizhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-52772661a017402491ffe9c451ab1568c3b168eb4993491911e69dff83e2d0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yizhe</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yizhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Second Eigenvalue of Random Bipartite Biregular Graphs</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>1269</spage><epage>1303</epage><pages>1269-1303</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We consider the spectral gap of a uniformly chosen random ( d 1 , d 2 ) -biregular bipartite graph G with | V 1 | = n , | V 2 | = m , where d 1 , d 2 could possibly grow with n and m . Let A be the adjacency matrix of G . Under the assumption that d 1 ≥ d 2 and d 2 = O ( n 2 / 3 ) , we show that λ 2 ( A ) = O ( d 1 ) with high probability. As a corollary, combining the results from (Tikhomirov and Yousse in Ann Probab 47(1):362–419, 2019), we show that the second singular value of a uniform random d -regular digraph is O ( d ) for 1 ≤ d ≤ n / 2 with high probability. Assuming d 2 is fixed and d 1 = O ( n 2 ) , we further prove that for a random ( d 1 , d 2 ) -biregular bipartite graph, | λ i 2 ( A ) - d 1 | = O ( d 1 ) for all 2 ≤ i ≤ n + m - 1 with high probability. The proofs of the two results are based on the size biased coupling method introduced in Cook et al. (Ann Probab 46(1):72–125, 2018) for random d -regular graphs and several new switching operations we define for random bipartite biregular graphs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-022-01190-0</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-5665-0374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2023-06, Vol.36 (2), p.1269-1303
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_2817624141
source SpringerLink Journals
subjects Eigenvalues
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Statistics
title On the Second Eigenvalue of Random Bipartite Biregular Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Second%20Eigenvalue%20of%20Random%20Bipartite%20Biregular%20Graphs&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Zhu,%20Yizhe&rft.date=2023-06-01&rft.volume=36&rft.issue=2&rft.spage=1269&rft.epage=1303&rft.pages=1269-1303&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-022-01190-0&rft_dat=%3Cproquest_cross%3E2817624141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817624141&rft_id=info:pmid/&rfr_iscdi=true