Neurosymbolic Models for Computer Graphics
Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representati...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2023-05, Vol.42 (2), p.545-568 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 568 |
---|---|
container_issue | 2 |
container_start_page | 545 |
container_title | Computer graphics forum |
container_volume | 42 |
creator | Ritchie, Daniel Guerrero, Paul Jones, R. Kenny Mitra, Niloy J. Schulz, Adriana Willis, Karl D. D. Wu, Jiajun |
description | Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research. |
doi_str_mv | 10.1111/cgf.14775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817292904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817292904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3325-f27a91717848d6542d4cb9d341c44a396d0986ec0538a01c4bc6629969533ce3</originalsourceid><addsrcrecordid>eNp1kEtLxDAQgIMoWFcP_oOCJ4Xu5v04SnGrsOpl7yFNU-3Smppskf57o_XqXGYYvnnwAXCN4Bql2Ni3do2oEOwEZIhyUUjO1CnIIEq1gIydg4sYDxBCKjjLwN2Lm4KP81D7vrP5s29cH_PWh7z0wzgdXcirYMb3zsZLcNaaPrqrv7wC--3Dvnwsdq_VU3m_KywhmBUtFkYhgYSksuGM4obaWjWEIkupIYo3UEnuLGREGpiateUcK8UVI8Q6sgI3y9ox-M_JxaM--Cl8pIsaSySwwgrSRN0ulE3fx-BaPYZuMGHWCOofEzqZ0L8mErtZ2K-ud_P_oC6r7TLxDU88XOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817292904</pqid></control><display><type>article</type><title>Neurosymbolic Models for Computer Graphics</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ritchie, Daniel ; Guerrero, Paul ; Jones, R. Kenny ; Mitra, Niloy J. ; Schulz, Adriana ; Willis, Karl D. D. ; Wu, Jiajun</creator><creatorcontrib>Ritchie, Daniel ; Guerrero, Paul ; Jones, R. Kenny ; Mitra, Niloy J. ; Schulz, Adriana ; Willis, Karl D. D. ; Wu, Jiajun</creatorcontrib><description>Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14775</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; CCS Concepts ; Computer graphics ; Computing methodologies → Shape modeling; Reflectance modeling; Texturing; Neural networks; Computer vision ; Design parameters ; Graphical representations ; Machine learning ; Neural networks ; Optimization ; Software and its engineering → Domain specific languages; Programming by example</subject><ispartof>Computer graphics forum, 2023-05, Vol.42 (2), p.545-568</ispartof><rights>2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.</rights><rights>2023 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3325-f27a91717848d6542d4cb9d341c44a396d0986ec0538a01c4bc6629969533ce3</citedby><cites>FETCH-LOGICAL-c3325-f27a91717848d6542d4cb9d341c44a396d0986ec0538a01c4bc6629969533ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ritchie, Daniel</creatorcontrib><creatorcontrib>Guerrero, Paul</creatorcontrib><creatorcontrib>Jones, R. Kenny</creatorcontrib><creatorcontrib>Mitra, Niloy J.</creatorcontrib><creatorcontrib>Schulz, Adriana</creatorcontrib><creatorcontrib>Willis, Karl D. D.</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><title>Neurosymbolic Models for Computer Graphics</title><title>Computer graphics forum</title><description>Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research.</description><subject>Algorithms</subject><subject>CCS Concepts</subject><subject>Computer graphics</subject><subject>Computing methodologies → Shape modeling; Reflectance modeling; Texturing; Neural networks; Computer vision</subject><subject>Design parameters</subject><subject>Graphical representations</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Software and its engineering → Domain specific languages; Programming by example</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAQgIMoWFcP_oOCJ4Xu5v04SnGrsOpl7yFNU-3Smppskf57o_XqXGYYvnnwAXCN4Bql2Ni3do2oEOwEZIhyUUjO1CnIIEq1gIydg4sYDxBCKjjLwN2Lm4KP81D7vrP5s29cH_PWh7z0wzgdXcirYMb3zsZLcNaaPrqrv7wC--3Dvnwsdq_VU3m_KywhmBUtFkYhgYSksuGM4obaWjWEIkupIYo3UEnuLGREGpiateUcK8UVI8Q6sgI3y9ox-M_JxaM--Cl8pIsaSySwwgrSRN0ulE3fx-BaPYZuMGHWCOofEzqZ0L8mErtZ2K-ud_P_oC6r7TLxDU88XOs</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Ritchie, Daniel</creator><creator>Guerrero, Paul</creator><creator>Jones, R. Kenny</creator><creator>Mitra, Niloy J.</creator><creator>Schulz, Adriana</creator><creator>Willis, Karl D. D.</creator><creator>Wu, Jiajun</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202305</creationdate><title>Neurosymbolic Models for Computer Graphics</title><author>Ritchie, Daniel ; Guerrero, Paul ; Jones, R. Kenny ; Mitra, Niloy J. ; Schulz, Adriana ; Willis, Karl D. D. ; Wu, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3325-f27a91717848d6542d4cb9d341c44a396d0986ec0538a01c4bc6629969533ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>CCS Concepts</topic><topic>Computer graphics</topic><topic>Computing methodologies → Shape modeling; Reflectance modeling; Texturing; Neural networks; Computer vision</topic><topic>Design parameters</topic><topic>Graphical representations</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Software and its engineering → Domain specific languages; Programming by example</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritchie, Daniel</creatorcontrib><creatorcontrib>Guerrero, Paul</creatorcontrib><creatorcontrib>Jones, R. Kenny</creatorcontrib><creatorcontrib>Mitra, Niloy J.</creatorcontrib><creatorcontrib>Schulz, Adriana</creatorcontrib><creatorcontrib>Willis, Karl D. D.</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritchie, Daniel</au><au>Guerrero, Paul</au><au>Jones, R. Kenny</au><au>Mitra, Niloy J.</au><au>Schulz, Adriana</au><au>Willis, Karl D. D.</au><au>Wu, Jiajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurosymbolic Models for Computer Graphics</atitle><jtitle>Computer graphics forum</jtitle><date>2023-05</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>545</spage><epage>568</epage><pages>545-568</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14775</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2023-05, Vol.42 (2), p.545-568 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_2817292904 |
source | Wiley Journals; EBSCOhost Business Source Complete |
subjects | Algorithms CCS Concepts Computer graphics Computing methodologies → Shape modeling Reflectance modeling Texturing Neural networks Computer vision Design parameters Graphical representations Machine learning Neural networks Optimization Software and its engineering → Domain specific languages Programming by example |
title | Neurosymbolic Models for Computer Graphics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurosymbolic%20Models%20for%20Computer%20Graphics&rft.jtitle=Computer%20graphics%20forum&rft.au=Ritchie,%20Daniel&rft.date=2023-05&rft.volume=42&rft.issue=2&rft.spage=545&rft.epage=568&rft.pages=545-568&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14775&rft_dat=%3Cproquest_cross%3E2817292904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817292904&rft_id=info:pmid/&rfr_iscdi=true |