Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia
Electrochemical nitrate reduction reaction (NO 3 RR) has great potential for ammonia (NH 3 ) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpo...
Gespeichert in:
Veröffentlicht in: | Nano research 2023-05, Vol.16 (5), p.6632-6641 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6641 |
---|---|
container_issue | 5 |
container_start_page | 6632 |
container_title | Nano research |
container_volume | 16 |
creator | Zhang, Zunjie Liu, Yang Su, Xiaozhi Zhao, Ziwei Mo, Zhenkun Wang, Chenyi Zhao, Yaling Chen, Ye Gao, Shuyan |
description | Electrochemical nitrate reduction reaction (NO
3
RR) has great potential for ammonia (NH
3
) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO
3
RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu
1
Ni
1
, which exhibited a more positive NO
3
RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm
−2
in 0.5 mol·L
−1
Na
2
SO
4
+ 0.1 mol·L
−1
KNO
3
solution. Importantly, CFP-Cu
1
Ni
1
presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH
3
yield rate of 180.58 µmol·h
−1
·cm
−2
(2550 µmol·h
−1
·mg
cat
−1
) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO
3
−
and weakened the adsorption of NH
3
. Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO
3
RR toward ammonia. |
doi_str_mv | 10.1007/s12274-023-5402-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817260297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817260297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</originalsourceid><addsrcrecordid>eNp1UUtLAzEQDqJgrf4AbwHP0ST7zFFKfVH0oueQZme7KdukJllk_Sn-WlNW8eRcZob5HjAfQpeMXjNKq5vAOK9yQnlGipxyMh6hGROiJjTV8e_MeH6KzkLYUlpyltcz9LXsQUfvSPRmswEPDX5yQw-4AxWN3eAdxM41ODocRhs7COYTcEiXHsi-UwHwYng22CrriOp7N2KtourHEHHrPIa2NdqAjRgmo-kajcbWRK8i4OQ56GicTSYfyjdY7XbOGnWOTlrVB7j46XP0drd8XTyQ1cv94-J2RXTGykgUFJw1DWdVUdZVrgUTvGyUAiVEQRtWiapsMlYInv5Urlu9LugaWA5pydusyOboatLde_c-QIhy6wZvk6XkNat4SbmoEopNKO1dCB5aufdmp_woGZWHCOQUgUwRyEMEckwcPnFCwtr03T_l_0nfhZ2NhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817260297</pqid></control><display><type>article</type><title>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</title><source>SpringerLink Journals</source><creator>Zhang, Zunjie ; Liu, Yang ; Su, Xiaozhi ; Zhao, Ziwei ; Mo, Zhenkun ; Wang, Chenyi ; Zhao, Yaling ; Chen, Ye ; Gao, Shuyan</creator><creatorcontrib>Zhang, Zunjie ; Liu, Yang ; Su, Xiaozhi ; Zhao, Ziwei ; Mo, Zhenkun ; Wang, Chenyi ; Zhao, Yaling ; Chen, Ye ; Gao, Shuyan</creatorcontrib><description>Electrochemical nitrate reduction reaction (NO
3
RR) has great potential for ammonia (NH
3
) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO
3
RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu
1
Ni
1
, which exhibited a more positive NO
3
RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm
−2
in 0.5 mol·L
−1
Na
2
SO
4
+ 0.1 mol·L
−1
KNO
3
solution. Importantly, CFP-Cu
1
Ni
1
presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH
3
yield rate of 180.58 µmol·h
−1
·cm
−2
(2550 µmol·h
−1
·mg
cat
−1
) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO
3
−
and weakened the adsorption of NH
3
. Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO
3
RR toward ammonia.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5402-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Adsorption ; Alloying elements ; Alloys ; Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon fibers ; Catalysis ; Catalysts ; Catalytic activity ; Chemical reduction ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; Copper ; Copper base alloys ; Dispersion ; Electrocatalysts ; Electrochemistry ; Heating ; Hydrogen ions ; Materials Science ; Nanoalloys ; Nanoparticles ; Nanotechnology ; Nitrate reduction ; Ohmic dissipation ; Phase separation ; Research Article ; Resistance heating ; Sodium sulfate</subject><ispartof>Nano research, 2023-05, Vol.16 (5), p.6632-6641</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</citedby><cites>FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-5402-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-5402-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Zunjie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Zhao, Ziwei</creatorcontrib><creatorcontrib>Mo, Zhenkun</creatorcontrib><creatorcontrib>Wang, Chenyi</creatorcontrib><creatorcontrib>Zhao, Yaling</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Gao, Shuyan</creatorcontrib><title>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Electrochemical nitrate reduction reaction (NO
3
RR) has great potential for ammonia (NH
3
) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO
3
RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu
1
Ni
1
, which exhibited a more positive NO
3
RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm
−2
in 0.5 mol·L
−1
Na
2
SO
4
+ 0.1 mol·L
−1
KNO
3
solution. Importantly, CFP-Cu
1
Ni
1
presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH
3
yield rate of 180.58 µmol·h
−1
·cm
−2
(2550 µmol·h
−1
·mg
cat
−1
) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO
3
−
and weakened the adsorption of NH
3
. Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO
3
RR toward ammonia.</description><subject>Adsorption</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon fibers</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Heating</subject><subject>Hydrogen ions</subject><subject>Materials Science</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nitrate reduction</subject><subject>Ohmic dissipation</subject><subject>Phase separation</subject><subject>Research Article</subject><subject>Resistance heating</subject><subject>Sodium sulfate</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UUtLAzEQDqJgrf4AbwHP0ST7zFFKfVH0oueQZme7KdukJllk_Sn-WlNW8eRcZob5HjAfQpeMXjNKq5vAOK9yQnlGipxyMh6hGROiJjTV8e_MeH6KzkLYUlpyltcz9LXsQUfvSPRmswEPDX5yQw-4AxWN3eAdxM41ODocRhs7COYTcEiXHsi-UwHwYng22CrriOp7N2KtourHEHHrPIa2NdqAjRgmo-kajcbWRK8i4OQ56GicTSYfyjdY7XbOGnWOTlrVB7j46XP0drd8XTyQ1cv94-J2RXTGykgUFJw1DWdVUdZVrgUTvGyUAiVEQRtWiapsMlYInv5Urlu9LugaWA5pydusyOboatLde_c-QIhy6wZvk6XkNat4SbmoEopNKO1dCB5aufdmp_woGZWHCOQUgUwRyEMEckwcPnFCwtr03T_l_0nfhZ2NhA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhang, Zunjie</creator><creator>Liu, Yang</creator><creator>Su, Xiaozhi</creator><creator>Zhao, Ziwei</creator><creator>Mo, Zhenkun</creator><creator>Wang, Chenyi</creator><creator>Zhao, Yaling</creator><creator>Chen, Ye</creator><creator>Gao, Shuyan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230501</creationdate><title>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</title><author>Zhang, Zunjie ; Liu, Yang ; Su, Xiaozhi ; Zhao, Ziwei ; Mo, Zhenkun ; Wang, Chenyi ; Zhao, Yaling ; Chen, Ye ; Gao, Shuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon fibers</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Heating</topic><topic>Hydrogen ions</topic><topic>Materials Science</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nitrate reduction</topic><topic>Ohmic dissipation</topic><topic>Phase separation</topic><topic>Research Article</topic><topic>Resistance heating</topic><topic>Sodium sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zunjie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Zhao, Ziwei</creatorcontrib><creatorcontrib>Mo, Zhenkun</creatorcontrib><creatorcontrib>Wang, Chenyi</creatorcontrib><creatorcontrib>Zhao, Yaling</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Gao, Shuyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zunjie</au><au>Liu, Yang</au><au>Su, Xiaozhi</au><au>Zhao, Ziwei</au><au>Mo, Zhenkun</au><au>Wang, Chenyi</au><au>Zhao, Yaling</au><au>Chen, Ye</au><au>Gao, Shuyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>5</issue><spage>6632</spage><epage>6641</epage><pages>6632-6641</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Electrochemical nitrate reduction reaction (NO
3
RR) has great potential for ammonia (NH
3
) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO
3
RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu
1
Ni
1
, which exhibited a more positive NO
3
RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm
−2
in 0.5 mol·L
−1
Na
2
SO
4
+ 0.1 mol·L
−1
KNO
3
solution. Importantly, CFP-Cu
1
Ni
1
presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH
3
yield rate of 180.58 µmol·h
−1
·cm
−2
(2550 µmol·h
−1
·mg
cat
−1
) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO
3
−
and weakened the adsorption of NH
3
. Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO
3
RR toward ammonia.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5402-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2023-05, Vol.16 (5), p.6632-6641 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2817260297 |
source | SpringerLink Journals |
subjects | Adsorption Alloying elements Alloys Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon fibers Catalysis Catalysts Catalytic activity Chemical reduction Chemical synthesis Chemistry and Materials Science Condensed Matter Physics Copper Copper base alloys Dispersion Electrocatalysts Electrochemistry Heating Hydrogen ions Materials Science Nanoalloys Nanoparticles Nanotechnology Nitrate reduction Ohmic dissipation Phase separation Research Article Resistance heating Sodium sulfate |
title | Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-triggered%20Joule%20heating%20method%20to%20synthesize%20single-phase%20CuNi%20nano-alloy%20catalyst%20for%20efficient%20electrocatalytic%20nitrate%20reduction%20toward%20ammonia&rft.jtitle=Nano%20research&rft.au=Zhang,%20Zunjie&rft.date=2023-05-01&rft.volume=16&rft.issue=5&rft.spage=6632&rft.epage=6641&rft.pages=6632-6641&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5402-y&rft_dat=%3Cproquest_cross%3E2817260297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817260297&rft_id=info:pmid/&rfr_iscdi=true |