Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia

Electrochemical nitrate reduction reaction (NO 3 RR) has great potential for ammonia (NH 3 ) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2023-05, Vol.16 (5), p.6632-6641
Hauptverfasser: Zhang, Zunjie, Liu, Yang, Su, Xiaozhi, Zhao, Ziwei, Mo, Zhenkun, Wang, Chenyi, Zhao, Yaling, Chen, Ye, Gao, Shuyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6641
container_issue 5
container_start_page 6632
container_title Nano research
container_volume 16
creator Zhang, Zunjie
Liu, Yang
Su, Xiaozhi
Zhao, Ziwei
Mo, Zhenkun
Wang, Chenyi
Zhao, Yaling
Chen, Ye
Gao, Shuyan
description Electrochemical nitrate reduction reaction (NO 3 RR) has great potential for ammonia (NH 3 ) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO 3 RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu 1 Ni 1 , which exhibited a more positive NO 3 RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm −2 in 0.5 mol·L −1 Na 2 SO 4 + 0.1 mol·L −1 KNO 3 solution. Importantly, CFP-Cu 1 Ni 1 presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH 3 yield rate of 180.58 µmol·h −1 ·cm −2 (2550 µmol·h −1 ·mg cat −1 ) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO 3 − and weakened the adsorption of NH 3 . Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO 3 RR toward ammonia.
doi_str_mv 10.1007/s12274-023-5402-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817260297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817260297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</originalsourceid><addsrcrecordid>eNp1UUtLAzEQDqJgrf4AbwHP0ST7zFFKfVH0oueQZme7KdukJllk_Sn-WlNW8eRcZob5HjAfQpeMXjNKq5vAOK9yQnlGipxyMh6hGROiJjTV8e_MeH6KzkLYUlpyltcz9LXsQUfvSPRmswEPDX5yQw-4AxWN3eAdxM41ODocRhs7COYTcEiXHsi-UwHwYng22CrriOp7N2KtourHEHHrPIa2NdqAjRgmo-kajcbWRK8i4OQ56GicTSYfyjdY7XbOGnWOTlrVB7j46XP0drd8XTyQ1cv94-J2RXTGykgUFJw1DWdVUdZVrgUTvGyUAiVEQRtWiapsMlYInv5Urlu9LugaWA5pydusyOboatLde_c-QIhy6wZvk6XkNat4SbmoEopNKO1dCB5aufdmp_woGZWHCOQUgUwRyEMEckwcPnFCwtr03T_l_0nfhZ2NhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817260297</pqid></control><display><type>article</type><title>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</title><source>SpringerLink Journals</source><creator>Zhang, Zunjie ; Liu, Yang ; Su, Xiaozhi ; Zhao, Ziwei ; Mo, Zhenkun ; Wang, Chenyi ; Zhao, Yaling ; Chen, Ye ; Gao, Shuyan</creator><creatorcontrib>Zhang, Zunjie ; Liu, Yang ; Su, Xiaozhi ; Zhao, Ziwei ; Mo, Zhenkun ; Wang, Chenyi ; Zhao, Yaling ; Chen, Ye ; Gao, Shuyan</creatorcontrib><description>Electrochemical nitrate reduction reaction (NO 3 RR) has great potential for ammonia (NH 3 ) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO 3 RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu 1 Ni 1 , which exhibited a more positive NO 3 RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm −2 in 0.5 mol·L −1 Na 2 SO 4 + 0.1 mol·L −1 KNO 3 solution. Importantly, CFP-Cu 1 Ni 1 presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH 3 yield rate of 180.58 µmol·h −1 ·cm −2 (2550 µmol·h −1 ·mg cat −1 ) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO 3 − and weakened the adsorption of NH 3 . Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO 3 RR toward ammonia.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5402-y</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Adsorption ; Alloying elements ; Alloys ; Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon fibers ; Catalysis ; Catalysts ; Catalytic activity ; Chemical reduction ; Chemical synthesis ; Chemistry and Materials Science ; Condensed Matter Physics ; Copper ; Copper base alloys ; Dispersion ; Electrocatalysts ; Electrochemistry ; Heating ; Hydrogen ions ; Materials Science ; Nanoalloys ; Nanoparticles ; Nanotechnology ; Nitrate reduction ; Ohmic dissipation ; Phase separation ; Research Article ; Resistance heating ; Sodium sulfate</subject><ispartof>Nano research, 2023-05, Vol.16 (5), p.6632-6641</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</citedby><cites>FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-5402-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-5402-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Zunjie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Zhao, Ziwei</creatorcontrib><creatorcontrib>Mo, Zhenkun</creatorcontrib><creatorcontrib>Wang, Chenyi</creatorcontrib><creatorcontrib>Zhao, Yaling</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Gao, Shuyan</creatorcontrib><title>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Electrochemical nitrate reduction reaction (NO 3 RR) has great potential for ammonia (NH 3 ) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO 3 RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu 1 Ni 1 , which exhibited a more positive NO 3 RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm −2 in 0.5 mol·L −1 Na 2 SO 4 + 0.1 mol·L −1 KNO 3 solution. Importantly, CFP-Cu 1 Ni 1 presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH 3 yield rate of 180.58 µmol·h −1 ·cm −2 (2550 µmol·h −1 ·mg cat −1 ) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO 3 − and weakened the adsorption of NH 3 . Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO 3 RR toward ammonia.</description><subject>Adsorption</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon fibers</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Heating</subject><subject>Hydrogen ions</subject><subject>Materials Science</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nitrate reduction</subject><subject>Ohmic dissipation</subject><subject>Phase separation</subject><subject>Research Article</subject><subject>Resistance heating</subject><subject>Sodium sulfate</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UUtLAzEQDqJgrf4AbwHP0ST7zFFKfVH0oueQZme7KdukJllk_Sn-WlNW8eRcZob5HjAfQpeMXjNKq5vAOK9yQnlGipxyMh6hGROiJjTV8e_MeH6KzkLYUlpyltcz9LXsQUfvSPRmswEPDX5yQw-4AxWN3eAdxM41ODocRhs7COYTcEiXHsi-UwHwYng22CrriOp7N2KtourHEHHrPIa2NdqAjRgmo-kajcbWRK8i4OQ56GicTSYfyjdY7XbOGnWOTlrVB7j46XP0drd8XTyQ1cv94-J2RXTGykgUFJw1DWdVUdZVrgUTvGyUAiVEQRtWiapsMlYInv5Urlu9LugaWA5pydusyOboatLde_c-QIhy6wZvk6XkNat4SbmoEopNKO1dCB5aufdmp_woGZWHCOQUgUwRyEMEckwcPnFCwtr03T_l_0nfhZ2NhA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhang, Zunjie</creator><creator>Liu, Yang</creator><creator>Su, Xiaozhi</creator><creator>Zhao, Ziwei</creator><creator>Mo, Zhenkun</creator><creator>Wang, Chenyi</creator><creator>Zhao, Yaling</creator><creator>Chen, Ye</creator><creator>Gao, Shuyan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230501</creationdate><title>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</title><author>Zhang, Zunjie ; Liu, Yang ; Su, Xiaozhi ; Zhao, Ziwei ; Mo, Zhenkun ; Wang, Chenyi ; Zhao, Yaling ; Chen, Ye ; Gao, Shuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ae521dd21756874c91926daaea9950d17976d315920076bfcb50be14e76b4f353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon fibers</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Heating</topic><topic>Hydrogen ions</topic><topic>Materials Science</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nitrate reduction</topic><topic>Ohmic dissipation</topic><topic>Phase separation</topic><topic>Research Article</topic><topic>Resistance heating</topic><topic>Sodium sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zunjie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Zhao, Ziwei</creatorcontrib><creatorcontrib>Mo, Zhenkun</creatorcontrib><creatorcontrib>Wang, Chenyi</creatorcontrib><creatorcontrib>Zhao, Yaling</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Gao, Shuyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zunjie</au><au>Liu, Yang</au><au>Su, Xiaozhi</au><au>Zhao, Ziwei</au><au>Mo, Zhenkun</au><au>Wang, Chenyi</au><au>Zhao, Yaling</au><au>Chen, Ye</au><au>Gao, Shuyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>5</issue><spage>6632</spage><epage>6641</epage><pages>6632-6641</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Electrochemical nitrate reduction reaction (NO 3 RR) has great potential for ammonia (NH 3 ) synthesis benefiting from its environmental friendliness and sustainability. Cu-based alloys with elemental diversity and adsorption tunability are widely used as electrocatalyst to lower the reaction overpotential for NO 3 RR catalysis. However, phase separation commonly found in alloys leads to uneven distribution of elements, which limits the possibility of further optimizing the catalytic activity. Herein, an electro-triggered Joule heating method, possessing unique superiority of flash heating and cooling that lead to well-dispersed nanoparticles and uniform mixing of various elements, was adopted to synthesize a single-phase CuNi nano-alloy catalyst evenly dispersed on carbon fiber paper, CFP-Cu 1 Ni 1 , which exhibited a more positive NO 3 RR initial potential of 0.1 V versus reversible hydrogen electrode (vs. RHE) than that of pure copper nanoparticles at 10 mA·cm −2 in 0.5 mol·L −1 Na 2 SO 4 + 0.1 mol·L −1 KNO 3 solution. Importantly, CFP-Cu 1 Ni 1 presented high electrocatalytic activity with a Faradaic efficiency of 95.7% and NH 3 yield rate of 180.58 µmol·h −1 ·cm −2 (2550 µmol·h −1 ·mg cat −1 ) at −0.22 V vs. RHE. Theoretical calculations showed that alloying Cu with Ni into single-phase caused an upshift of its d-band center, which promoted the adsorption of NO 3 − and weakened the adsorption of NH 3 . Moreover, the competitive adsorption of hydrogen ions was restrained until −0.24 V. This work offers a rational design concept with clear guidance for rapid synthesis of uniformly dispersed single-phase nano-alloy catalyst for efficient electrochemical NO 3 RR toward ammonia.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5402-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2023-05, Vol.16 (5), p.6632-6641
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2817260297
source SpringerLink Journals
subjects Adsorption
Alloying elements
Alloys
Ammonia
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carbon fibers
Catalysis
Catalysts
Catalytic activity
Chemical reduction
Chemical synthesis
Chemistry and Materials Science
Condensed Matter Physics
Copper
Copper base alloys
Dispersion
Electrocatalysts
Electrochemistry
Heating
Hydrogen ions
Materials Science
Nanoalloys
Nanoparticles
Nanotechnology
Nitrate reduction
Ohmic dissipation
Phase separation
Research Article
Resistance heating
Sodium sulfate
title Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-triggered%20Joule%20heating%20method%20to%20synthesize%20single-phase%20CuNi%20nano-alloy%20catalyst%20for%20efficient%20electrocatalytic%20nitrate%20reduction%20toward%20ammonia&rft.jtitle=Nano%20research&rft.au=Zhang,%20Zunjie&rft.date=2023-05-01&rft.volume=16&rft.issue=5&rft.spage=6632&rft.epage=6641&rft.pages=6632-6641&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5402-y&rft_dat=%3Cproquest_cross%3E2817260297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817260297&rft_id=info:pmid/&rfr_iscdi=true