P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution
The edge S sites of thermodynamically stable 2H MoS 2 are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase...
Gespeichert in:
Veröffentlicht in: | Nano research 2023-05, Vol.16 (5), p.6228-6236 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6236 |
---|---|
container_issue | 5 |
container_start_page | 6228 |
container_title | Nano research |
container_volume | 16 |
creator | Meng, Chao Gao, Yuanfeng Zhou, Yue Sun, Kang Wang, Yanmin Han, Ye Zhao, Qianqian Chen, Xuemin Hu, Han Wu, Mingbo |
description | The edge S sites of thermodynamically stable 2H MoS
2
are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH
4
+
intercalation to promote the HER performance of MoS
2
. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH
4
+
ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm
−2
and Tafel slope of 39 mV·dec
−1
with robust stability, superior to most of recently reported MoS
2
-based non-noble catalysts. The combined use of
in/ex-situ
characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts. |
doi_str_mv | 10.1007/s12274-022-5287-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817259712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817259712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-36ad214723b784c669f171ba6935272bcdcb72bf54d9e7171012221cbc352f043</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPE2eDdPJwcUQUUqQikwtk4jtOmKnaxk0r9-zoKiBN7mZVmZh9DyDXwW-Bc3AVAFCnjiCzDQjA4IRMoy4LxWKe_PWB6Ti5C2HCeI6TFhHy-sUrZmmpjO-NptzbOH-iqb2tTU6W7dq-61lnqGvrilkgrFdSWLmloOxNo4zzdzVlv273xA7E-1N6tjKVm77b94LwkZ43aBnP1g1Py8fjwPpuzxevT8-x-wXQCeceSXNXxIoFJJYpU53nZgIBK5WWSocBK17qK0GRpXRoRqfgLIuhKR77haTIlN-PcnXffvQmd3Lje27hSYgECs1IARhWMKu1dCN40cufbL-UPErgcgpRjkDIGKYcgJUQPjp4QtXZl_N_k_01HG4h04A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817259712</pqid></control><display><type>article</type><title>P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution</title><source>SpringerLink Journals</source><creator>Meng, Chao ; Gao, Yuanfeng ; Zhou, Yue ; Sun, Kang ; Wang, Yanmin ; Han, Ye ; Zhao, Qianqian ; Chen, Xuemin ; Hu, Han ; Wu, Mingbo</creator><creatorcontrib>Meng, Chao ; Gao, Yuanfeng ; Zhou, Yue ; Sun, Kang ; Wang, Yanmin ; Han, Ye ; Zhao, Qianqian ; Chen, Xuemin ; Hu, Han ; Wu, Mingbo</creatorcontrib><description>The edge S sites of thermodynamically stable 2H MoS
2
are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH
4
+
intercalation to promote the HER performance of MoS
2
. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH
4
+
ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm
−2
and Tafel slope of 39 mV·dec
−1
with robust stability, superior to most of recently reported MoS
2
-based non-noble catalysts. The combined use of
in/ex-situ
characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-022-5287-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrocatalysis ; Engineering ; Hydrogen ; Hydrogen evolution reactions ; Key nanomaterials for industrial chemical process ; Materials Science ; Molybdenum ; Molybdenum disulfide ; Nanotechnology ; Nickel ; Phase transitions ; Research Article ; Transition metals</subject><ispartof>Nano research, 2023-05, Vol.16 (5), p.6228-6236</ispartof><rights>Tsinghua University Press 2022</rights><rights>Tsinghua University Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-36ad214723b784c669f171ba6935272bcdcb72bf54d9e7171012221cbc352f043</citedby><cites>FETCH-LOGICAL-c316t-36ad214723b784c669f171ba6935272bcdcb72bf54d9e7171012221cbc352f043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-022-5287-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-022-5287-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Meng, Chao</creatorcontrib><creatorcontrib>Gao, Yuanfeng</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Wang, Yanmin</creatorcontrib><creatorcontrib>Han, Ye</creatorcontrib><creatorcontrib>Zhao, Qianqian</creatorcontrib><creatorcontrib>Chen, Xuemin</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><title>P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>The edge S sites of thermodynamically stable 2H MoS
2
are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH
4
+
intercalation to promote the HER performance of MoS
2
. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH
4
+
ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm
−2
and Tafel slope of 39 mV·dec
−1
with robust stability, superior to most of recently reported MoS
2
-based non-noble catalysts. The combined use of
in/ex-situ
characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysis</subject><subject>Engineering</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Key nanomaterials for industrial chemical process</subject><subject>Materials Science</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Phase transitions</subject><subject>Research Article</subject><subject>Transition metals</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLPE2eDdPJwcUQUUqQikwtk4jtOmKnaxk0r9-zoKiBN7mZVmZh9DyDXwW-Bc3AVAFCnjiCzDQjA4IRMoy4LxWKe_PWB6Ti5C2HCeI6TFhHy-sUrZmmpjO-NptzbOH-iqb2tTU6W7dq-61lnqGvrilkgrFdSWLmloOxNo4zzdzVlv273xA7E-1N6tjKVm77b94LwkZ43aBnP1g1Py8fjwPpuzxevT8-x-wXQCeceSXNXxIoFJJYpU53nZgIBK5WWSocBK17qK0GRpXRoRqfgLIuhKR77haTIlN-PcnXffvQmd3Lje27hSYgECs1IARhWMKu1dCN40cufbL-UPErgcgpRjkDIGKYcgJUQPjp4QtXZl_N_k_01HG4h04A</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Meng, Chao</creator><creator>Gao, Yuanfeng</creator><creator>Zhou, Yue</creator><creator>Sun, Kang</creator><creator>Wang, Yanmin</creator><creator>Han, Ye</creator><creator>Zhao, Qianqian</creator><creator>Chen, Xuemin</creator><creator>Hu, Han</creator><creator>Wu, Mingbo</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230501</creationdate><title>P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution</title><author>Meng, Chao ; Gao, Yuanfeng ; Zhou, Yue ; Sun, Kang ; Wang, Yanmin ; Han, Ye ; Zhao, Qianqian ; Chen, Xuemin ; Hu, Han ; Wu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-36ad214723b784c669f171ba6935272bcdcb72bf54d9e7171012221cbc352f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysis</topic><topic>Engineering</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Key nanomaterials for industrial chemical process</topic><topic>Materials Science</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Phase transitions</topic><topic>Research Article</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Chao</creatorcontrib><creatorcontrib>Gao, Yuanfeng</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Wang, Yanmin</creatorcontrib><creatorcontrib>Han, Ye</creatorcontrib><creatorcontrib>Zhao, Qianqian</creatorcontrib><creatorcontrib>Chen, Xuemin</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Chao</au><au>Gao, Yuanfeng</au><au>Zhou, Yue</au><au>Sun, Kang</au><au>Wang, Yanmin</au><au>Han, Ye</au><au>Zhao, Qianqian</au><au>Chen, Xuemin</au><au>Hu, Han</au><au>Wu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>5</issue><spage>6228</spage><epage>6236</epage><pages>6228-6236</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The edge S sites of thermodynamically stable 2H MoS
2
are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH
4
+
intercalation to promote the HER performance of MoS
2
. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH
4
+
ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm
−2
and Tafel slope of 39 mV·dec
−1
with robust stability, superior to most of recently reported MoS
2
-based non-noble catalysts. The combined use of
in/ex-situ
characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-022-5287-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2023-05, Vol.16 (5), p.6228-6236 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2817259712 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Catalysis Catalysts Chemistry and Materials Science Condensed Matter Physics Electrocatalysis Engineering Hydrogen Hydrogen evolution reactions Key nanomaterials for industrial chemical process Materials Science Molybdenum Molybdenum disulfide Nanotechnology Nickel Phase transitions Research Article Transition metals |
title | P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-band%20center%20theory%20guided%20activation%20of%20MoS2%20basal%20S%20sites%20for%20pH-universal%20hydrogen%20evolution&rft.jtitle=Nano%20research&rft.au=Meng,%20Chao&rft.date=2023-05-01&rft.volume=16&rft.issue=5&rft.spage=6228&rft.epage=6236&rft.pages=6228-6236&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-022-5287-1&rft_dat=%3Cproquest_cross%3E2817259712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817259712&rft_id=info:pmid/&rfr_iscdi=true |