EMuS – A Pulsed Muon Facility for Multidisciplinary Research

A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2023-05, Vol.220 (10), p.n/a
Hauptverfasser: Tang, Jing-Yu, Yuan, Ye, Ye, Bang-Jiao, Zhu, Zi‐An, Hou, Zhi-Long, Vassilopoulos, Nikolaos, Tang, Jian, Chen, Yu, Chen, Yu-Kai, Deng, Chang-Dong, Dong, Jing-Yu, Fan, Rui-Rui, He, Chong-Chao, Hong, Yang, Huang, Jin-Shu, Li, Yang, Meng, Xiang-Wei, Pan, Zi-Wen, Song, Ying-Peng, Sun, Ji-Lei, Wang, Li-Jiao, Wang, Meng-Lin, Wang, Peng-Cheng, Xie, Zong-Tai, Yadav, Nitin, Yan, Zhao-Hui, Yuan, Ling, Zhang, Gang, Zhang, Wen‐Qing, Zhao, Guang, Zhou, Lu-Ping, Zhou, Zhi-Hao, Zhu, Dong-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 220
creator Tang, Jing-Yu
Yuan, Ye
Ye, Bang-Jiao
Zhu, Zi‐An
Hou, Zhi-Long
Vassilopoulos, Nikolaos
Tang, Jian
Chen, Yu
Chen, Yu-Kai
Deng, Chang-Dong
Dong, Jing-Yu
Fan, Rui-Rui
He, Chong-Chao
Hong, Yang
Huang, Jin-Shu
Li, Yang
Meng, Xiang-Wei
Pan, Zi-Wen
Song, Ying-Peng
Sun, Ji-Lei
Wang, Li-Jiao
Wang, Meng-Lin
Wang, Peng-Cheng
Xie, Zong-Tai
Yadav, Nitin
Yan, Zhao-Hui
Yuan, Ling
Zhang, Gang
Zhang, Wen‐Qing
Zhao, Guang
Zhou, Lu-Ping
Zhou, Zhi-Hao
Zhu, Dong-Hui
description A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&D progress are also included. At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.
doi_str_mv 10.1002/pssa.202200426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817231594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817231594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPW2eS3c3uRSilfkCLxeo5hHxgytpdky7Sm__Bf-gvMaVSj55mGJ5nZngJuUQYIQC77mJUIwaMAeSsPCIDrEqWlRzr40MPcErOYlwlpMgFDsjNdN4v6ffnFx3TRd9Ea-i8b9f0Vmnf-M2WujakSbPxxkftu8avVdjSJxutCvr1nJw4layL3zokL7fT58l9Nnu8e5iMZ5nmKMpMCe3ySrCcGVs4KJRShrsamEDHDVrNRV4WUAKvnKitcQaBuQoMIEclFB-Sq_3eLrTvvY0buWr7sE4nJatQMI5FnSdqtKd0aGMM1sku-Lf0r0SQu4zkLiN5yCgJ9V748I3d_kPLxXI5_nN_ADsXals</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817231594</pqid></control><display><type>article</type><title>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</title><source>Access via Wiley Online Library</source><creator>Tang, Jing-Yu ; Yuan, Ye ; Ye, Bang-Jiao ; Zhu, Zi‐An ; Hou, Zhi-Long ; Vassilopoulos, Nikolaos ; Tang, Jian ; Chen, Yu ; Chen, Yu-Kai ; Deng, Chang-Dong ; Dong, Jing-Yu ; Fan, Rui-Rui ; He, Chong-Chao ; Hong, Yang ; Huang, Jin-Shu ; Li, Yang ; Meng, Xiang-Wei ; Pan, Zi-Wen ; Song, Ying-Peng ; Sun, Ji-Lei ; Wang, Li-Jiao ; Wang, Meng-Lin ; Wang, Peng-Cheng ; Xie, Zong-Tai ; Yadav, Nitin ; Yan, Zhao-Hui ; Yuan, Ling ; Zhang, Gang ; Zhang, Wen‐Qing ; Zhao, Guang ; Zhou, Lu-Ping ; Zhou, Zhi-Hao ; Zhu, Dong-Hui</creator><creatorcontrib>Tang, Jing-Yu ; Yuan, Ye ; Ye, Bang-Jiao ; Zhu, Zi‐An ; Hou, Zhi-Long ; Vassilopoulos, Nikolaos ; Tang, Jian ; Chen, Yu ; Chen, Yu-Kai ; Deng, Chang-Dong ; Dong, Jing-Yu ; Fan, Rui-Rui ; He, Chong-Chao ; Hong, Yang ; Huang, Jin-Shu ; Li, Yang ; Meng, Xiang-Wei ; Pan, Zi-Wen ; Song, Ying-Peng ; Sun, Ji-Lei ; Wang, Li-Jiao ; Wang, Meng-Lin ; Wang, Peng-Cheng ; Xie, Zong-Tai ; Yadav, Nitin ; Yan, Zhao-Hui ; Yuan, Ling ; Zhang, Gang ; Zhang, Wen‐Qing ; Zhao, Guang ; Zhou, Lu-Ping ; Zhou, Zhi-Hao ; Zhu, Dong-Hui</creatorcontrib><description>A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&amp;D progress are also included. At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200426</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Beam splitters ; Magnetic properties ; Magnets ; Multidisciplinary research ; muon beams ; muon imaging ; muon physics ; Muon spin relaxation ; Muon spin rotation ; muon spin rotation/relaxation/resonance techniques ; muonic X-rays ; Muons ; Neutrons ; Particle beams ; Pions ; Solenoids ; Spallation ; Superconductivity</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-05, Vol.220 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</citedby><cites>FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</cites><orcidid>0000-0002-5694-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tang, Jing-Yu</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Ye, Bang-Jiao</creatorcontrib><creatorcontrib>Zhu, Zi‐An</creatorcontrib><creatorcontrib>Hou, Zhi-Long</creatorcontrib><creatorcontrib>Vassilopoulos, Nikolaos</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Yu-Kai</creatorcontrib><creatorcontrib>Deng, Chang-Dong</creatorcontrib><creatorcontrib>Dong, Jing-Yu</creatorcontrib><creatorcontrib>Fan, Rui-Rui</creatorcontrib><creatorcontrib>He, Chong-Chao</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Huang, Jin-Shu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Meng, Xiang-Wei</creatorcontrib><creatorcontrib>Pan, Zi-Wen</creatorcontrib><creatorcontrib>Song, Ying-Peng</creatorcontrib><creatorcontrib>Sun, Ji-Lei</creatorcontrib><creatorcontrib>Wang, Li-Jiao</creatorcontrib><creatorcontrib>Wang, Meng-Lin</creatorcontrib><creatorcontrib>Wang, Peng-Cheng</creatorcontrib><creatorcontrib>Xie, Zong-Tai</creatorcontrib><creatorcontrib>Yadav, Nitin</creatorcontrib><creatorcontrib>Yan, Zhao-Hui</creatorcontrib><creatorcontrib>Yuan, Ling</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhang, Wen‐Qing</creatorcontrib><creatorcontrib>Zhao, Guang</creatorcontrib><creatorcontrib>Zhou, Lu-Ping</creatorcontrib><creatorcontrib>Zhou, Zhi-Hao</creatorcontrib><creatorcontrib>Zhu, Dong-Hui</creatorcontrib><title>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</title><title>Physica status solidi. A, Applications and materials science</title><description>A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&amp;D progress are also included. At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.</description><subject>Beam splitters</subject><subject>Magnetic properties</subject><subject>Magnets</subject><subject>Multidisciplinary research</subject><subject>muon beams</subject><subject>muon imaging</subject><subject>muon physics</subject><subject>Muon spin relaxation</subject><subject>Muon spin rotation</subject><subject>muon spin rotation/relaxation/resonance techniques</subject><subject>muonic X-rays</subject><subject>Muons</subject><subject>Neutrons</subject><subject>Particle beams</subject><subject>Pions</subject><subject>Solenoids</subject><subject>Spallation</subject><subject>Superconductivity</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPW2eS3c3uRSilfkCLxeo5hHxgytpdky7Sm__Bf-gvMaVSj55mGJ5nZngJuUQYIQC77mJUIwaMAeSsPCIDrEqWlRzr40MPcErOYlwlpMgFDsjNdN4v6ffnFx3TRd9Ea-i8b9f0Vmnf-M2WujakSbPxxkftu8avVdjSJxutCvr1nJw4layL3zokL7fT58l9Nnu8e5iMZ5nmKMpMCe3ySrCcGVs4KJRShrsamEDHDVrNRV4WUAKvnKitcQaBuQoMIEclFB-Sq_3eLrTvvY0buWr7sE4nJatQMI5FnSdqtKd0aGMM1sku-Lf0r0SQu4zkLiN5yCgJ9V748I3d_kPLxXI5_nN_ADsXals</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Tang, Jing-Yu</creator><creator>Yuan, Ye</creator><creator>Ye, Bang-Jiao</creator><creator>Zhu, Zi‐An</creator><creator>Hou, Zhi-Long</creator><creator>Vassilopoulos, Nikolaos</creator><creator>Tang, Jian</creator><creator>Chen, Yu</creator><creator>Chen, Yu-Kai</creator><creator>Deng, Chang-Dong</creator><creator>Dong, Jing-Yu</creator><creator>Fan, Rui-Rui</creator><creator>He, Chong-Chao</creator><creator>Hong, Yang</creator><creator>Huang, Jin-Shu</creator><creator>Li, Yang</creator><creator>Meng, Xiang-Wei</creator><creator>Pan, Zi-Wen</creator><creator>Song, Ying-Peng</creator><creator>Sun, Ji-Lei</creator><creator>Wang, Li-Jiao</creator><creator>Wang, Meng-Lin</creator><creator>Wang, Peng-Cheng</creator><creator>Xie, Zong-Tai</creator><creator>Yadav, Nitin</creator><creator>Yan, Zhao-Hui</creator><creator>Yuan, Ling</creator><creator>Zhang, Gang</creator><creator>Zhang, Wen‐Qing</creator><creator>Zhao, Guang</creator><creator>Zhou, Lu-Ping</creator><creator>Zhou, Zhi-Hao</creator><creator>Zhu, Dong-Hui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5694-3783</orcidid></search><sort><creationdate>202305</creationdate><title>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</title><author>Tang, Jing-Yu ; Yuan, Ye ; Ye, Bang-Jiao ; Zhu, Zi‐An ; Hou, Zhi-Long ; Vassilopoulos, Nikolaos ; Tang, Jian ; Chen, Yu ; Chen, Yu-Kai ; Deng, Chang-Dong ; Dong, Jing-Yu ; Fan, Rui-Rui ; He, Chong-Chao ; Hong, Yang ; Huang, Jin-Shu ; Li, Yang ; Meng, Xiang-Wei ; Pan, Zi-Wen ; Song, Ying-Peng ; Sun, Ji-Lei ; Wang, Li-Jiao ; Wang, Meng-Lin ; Wang, Peng-Cheng ; Xie, Zong-Tai ; Yadav, Nitin ; Yan, Zhao-Hui ; Yuan, Ling ; Zhang, Gang ; Zhang, Wen‐Qing ; Zhao, Guang ; Zhou, Lu-Ping ; Zhou, Zhi-Hao ; Zhu, Dong-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beam splitters</topic><topic>Magnetic properties</topic><topic>Magnets</topic><topic>Multidisciplinary research</topic><topic>muon beams</topic><topic>muon imaging</topic><topic>muon physics</topic><topic>Muon spin relaxation</topic><topic>Muon spin rotation</topic><topic>muon spin rotation/relaxation/resonance techniques</topic><topic>muonic X-rays</topic><topic>Muons</topic><topic>Neutrons</topic><topic>Particle beams</topic><topic>Pions</topic><topic>Solenoids</topic><topic>Spallation</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jing-Yu</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Ye, Bang-Jiao</creatorcontrib><creatorcontrib>Zhu, Zi‐An</creatorcontrib><creatorcontrib>Hou, Zhi-Long</creatorcontrib><creatorcontrib>Vassilopoulos, Nikolaos</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Yu-Kai</creatorcontrib><creatorcontrib>Deng, Chang-Dong</creatorcontrib><creatorcontrib>Dong, Jing-Yu</creatorcontrib><creatorcontrib>Fan, Rui-Rui</creatorcontrib><creatorcontrib>He, Chong-Chao</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Huang, Jin-Shu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Meng, Xiang-Wei</creatorcontrib><creatorcontrib>Pan, Zi-Wen</creatorcontrib><creatorcontrib>Song, Ying-Peng</creatorcontrib><creatorcontrib>Sun, Ji-Lei</creatorcontrib><creatorcontrib>Wang, Li-Jiao</creatorcontrib><creatorcontrib>Wang, Meng-Lin</creatorcontrib><creatorcontrib>Wang, Peng-Cheng</creatorcontrib><creatorcontrib>Xie, Zong-Tai</creatorcontrib><creatorcontrib>Yadav, Nitin</creatorcontrib><creatorcontrib>Yan, Zhao-Hui</creatorcontrib><creatorcontrib>Yuan, Ling</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhang, Wen‐Qing</creatorcontrib><creatorcontrib>Zhao, Guang</creatorcontrib><creatorcontrib>Zhou, Lu-Ping</creatorcontrib><creatorcontrib>Zhou, Zhi-Hao</creatorcontrib><creatorcontrib>Zhu, Dong-Hui</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jing-Yu</au><au>Yuan, Ye</au><au>Ye, Bang-Jiao</au><au>Zhu, Zi‐An</au><au>Hou, Zhi-Long</au><au>Vassilopoulos, Nikolaos</au><au>Tang, Jian</au><au>Chen, Yu</au><au>Chen, Yu-Kai</au><au>Deng, Chang-Dong</au><au>Dong, Jing-Yu</au><au>Fan, Rui-Rui</au><au>He, Chong-Chao</au><au>Hong, Yang</au><au>Huang, Jin-Shu</au><au>Li, Yang</au><au>Meng, Xiang-Wei</au><au>Pan, Zi-Wen</au><au>Song, Ying-Peng</au><au>Sun, Ji-Lei</au><au>Wang, Li-Jiao</au><au>Wang, Meng-Lin</au><au>Wang, Peng-Cheng</au><au>Xie, Zong-Tai</au><au>Yadav, Nitin</au><au>Yan, Zhao-Hui</au><au>Yuan, Ling</au><au>Zhang, Gang</au><au>Zhang, Wen‐Qing</au><au>Zhao, Guang</au><au>Zhou, Lu-Ping</au><au>Zhou, Zhi-Hao</au><au>Zhu, Dong-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-05</date><risdate>2023</risdate><volume>220</volume><issue>10</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&amp;D progress are also included. At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200426</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5694-3783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2023-05, Vol.220 (10), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2817231594
source Access via Wiley Online Library
subjects Beam splitters
Magnetic properties
Magnets
Multidisciplinary research
muon beams
muon imaging
muon physics
Muon spin relaxation
Muon spin rotation
muon spin rotation/relaxation/resonance techniques
muonic X-rays
Muons
Neutrons
Particle beams
Pions
Solenoids
Spallation
Superconductivity
title EMuS – A Pulsed Muon Facility for Multidisciplinary Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EMuS%20%E2%80%93%20A%20Pulsed%20Muon%20Facility%20for%20Multidisciplinary%20Research&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Tang,%20Jing-Yu&rft.date=2023-05&rft.volume=220&rft.issue=10&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200426&rft_dat=%3Cproquest_cross%3E2817231594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817231594&rft_id=info:pmid/&rfr_iscdi=true