EMuS – A Pulsed Muon Facility for Multidisciplinary Research
A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% o...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2023-05, Vol.220 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 220 |
creator | Tang, Jing-Yu Yuan, Ye Ye, Bang-Jiao Zhu, Zi‐An Hou, Zhi-Long Vassilopoulos, Nikolaos Tang, Jian Chen, Yu Chen, Yu-Kai Deng, Chang-Dong Dong, Jing-Yu Fan, Rui-Rui He, Chong-Chao Hong, Yang Huang, Jin-Shu Li, Yang Meng, Xiang-Wei Pan, Zi-Wen Song, Ying-Peng Sun, Ji-Lei Wang, Li-Jiao Wang, Meng-Lin Wang, Peng-Cheng Xie, Zong-Tai Yadav, Nitin Yan, Zhao-Hui Yuan, Ling Zhang, Gang Zhang, Wen‐Qing Zhao, Guang Zhou, Lu-Ping Zhou, Zhi-Hao Zhu, Dong-Hui |
description | A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&D progress are also included.
At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline. |
doi_str_mv | 10.1002/pssa.202200426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817231594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817231594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwHPW2eS3c3uRSilfkCLxeo5hHxgytpdky7Sm__Bf-gvMaVSj55mGJ5nZngJuUQYIQC77mJUIwaMAeSsPCIDrEqWlRzr40MPcErOYlwlpMgFDsjNdN4v6ffnFx3TRd9Ea-i8b9f0Vmnf-M2WujakSbPxxkftu8avVdjSJxutCvr1nJw4layL3zokL7fT58l9Nnu8e5iMZ5nmKMpMCe3ySrCcGVs4KJRShrsamEDHDVrNRV4WUAKvnKitcQaBuQoMIEclFB-Sq_3eLrTvvY0buWr7sE4nJatQMI5FnSdqtKd0aGMM1sku-Lf0r0SQu4zkLiN5yCgJ9V748I3d_kPLxXI5_nN_ADsXals</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817231594</pqid></control><display><type>article</type><title>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</title><source>Access via Wiley Online Library</source><creator>Tang, Jing-Yu ; Yuan, Ye ; Ye, Bang-Jiao ; Zhu, Zi‐An ; Hou, Zhi-Long ; Vassilopoulos, Nikolaos ; Tang, Jian ; Chen, Yu ; Chen, Yu-Kai ; Deng, Chang-Dong ; Dong, Jing-Yu ; Fan, Rui-Rui ; He, Chong-Chao ; Hong, Yang ; Huang, Jin-Shu ; Li, Yang ; Meng, Xiang-Wei ; Pan, Zi-Wen ; Song, Ying-Peng ; Sun, Ji-Lei ; Wang, Li-Jiao ; Wang, Meng-Lin ; Wang, Peng-Cheng ; Xie, Zong-Tai ; Yadav, Nitin ; Yan, Zhao-Hui ; Yuan, Ling ; Zhang, Gang ; Zhang, Wen‐Qing ; Zhao, Guang ; Zhou, Lu-Ping ; Zhou, Zhi-Hao ; Zhu, Dong-Hui</creator><creatorcontrib>Tang, Jing-Yu ; Yuan, Ye ; Ye, Bang-Jiao ; Zhu, Zi‐An ; Hou, Zhi-Long ; Vassilopoulos, Nikolaos ; Tang, Jian ; Chen, Yu ; Chen, Yu-Kai ; Deng, Chang-Dong ; Dong, Jing-Yu ; Fan, Rui-Rui ; He, Chong-Chao ; Hong, Yang ; Huang, Jin-Shu ; Li, Yang ; Meng, Xiang-Wei ; Pan, Zi-Wen ; Song, Ying-Peng ; Sun, Ji-Lei ; Wang, Li-Jiao ; Wang, Meng-Lin ; Wang, Peng-Cheng ; Xie, Zong-Tai ; Yadav, Nitin ; Yan, Zhao-Hui ; Yuan, Ling ; Zhang, Gang ; Zhang, Wen‐Qing ; Zhao, Guang ; Zhou, Lu-Ping ; Zhou, Zhi-Hao ; Zhu, Dong-Hui</creatorcontrib><description>A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&D progress are also included.
At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200426</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Beam splitters ; Magnetic properties ; Magnets ; Multidisciplinary research ; muon beams ; muon imaging ; muon physics ; Muon spin relaxation ; Muon spin rotation ; muon spin rotation/relaxation/resonance techniques ; muonic X-rays ; Muons ; Neutrons ; Particle beams ; Pions ; Solenoids ; Spallation ; Superconductivity</subject><ispartof>Physica status solidi. A, Applications and materials science, 2023-05, Vol.220 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</citedby><cites>FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</cites><orcidid>0000-0002-5694-3783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tang, Jing-Yu</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Ye, Bang-Jiao</creatorcontrib><creatorcontrib>Zhu, Zi‐An</creatorcontrib><creatorcontrib>Hou, Zhi-Long</creatorcontrib><creatorcontrib>Vassilopoulos, Nikolaos</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Yu-Kai</creatorcontrib><creatorcontrib>Deng, Chang-Dong</creatorcontrib><creatorcontrib>Dong, Jing-Yu</creatorcontrib><creatorcontrib>Fan, Rui-Rui</creatorcontrib><creatorcontrib>He, Chong-Chao</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Huang, Jin-Shu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Meng, Xiang-Wei</creatorcontrib><creatorcontrib>Pan, Zi-Wen</creatorcontrib><creatorcontrib>Song, Ying-Peng</creatorcontrib><creatorcontrib>Sun, Ji-Lei</creatorcontrib><creatorcontrib>Wang, Li-Jiao</creatorcontrib><creatorcontrib>Wang, Meng-Lin</creatorcontrib><creatorcontrib>Wang, Peng-Cheng</creatorcontrib><creatorcontrib>Xie, Zong-Tai</creatorcontrib><creatorcontrib>Yadav, Nitin</creatorcontrib><creatorcontrib>Yan, Zhao-Hui</creatorcontrib><creatorcontrib>Yuan, Ling</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhang, Wen‐Qing</creatorcontrib><creatorcontrib>Zhao, Guang</creatorcontrib><creatorcontrib>Zhou, Lu-Ping</creatorcontrib><creatorcontrib>Zhou, Zhi-Hao</creatorcontrib><creatorcontrib>Zhu, Dong-Hui</creatorcontrib><title>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</title><title>Physica status solidi. A, Applications and materials science</title><description>A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&D progress are also included.
At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.</description><subject>Beam splitters</subject><subject>Magnetic properties</subject><subject>Magnets</subject><subject>Multidisciplinary research</subject><subject>muon beams</subject><subject>muon imaging</subject><subject>muon physics</subject><subject>Muon spin relaxation</subject><subject>Muon spin rotation</subject><subject>muon spin rotation/relaxation/resonance techniques</subject><subject>muonic X-rays</subject><subject>Muons</subject><subject>Neutrons</subject><subject>Particle beams</subject><subject>Pions</subject><subject>Solenoids</subject><subject>Spallation</subject><subject>Superconductivity</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwHPW2eS3c3uRSilfkCLxeo5hHxgytpdky7Sm__Bf-gvMaVSj55mGJ5nZngJuUQYIQC77mJUIwaMAeSsPCIDrEqWlRzr40MPcErOYlwlpMgFDsjNdN4v6ffnFx3TRd9Ea-i8b9f0Vmnf-M2WujakSbPxxkftu8avVdjSJxutCvr1nJw4layL3zokL7fT58l9Nnu8e5iMZ5nmKMpMCe3ySrCcGVs4KJRShrsamEDHDVrNRV4WUAKvnKitcQaBuQoMIEclFB-Sq_3eLrTvvY0buWr7sE4nJatQMI5FnSdqtKd0aGMM1sku-Lf0r0SQu4zkLiN5yCgJ9V748I3d_kPLxXI5_nN_ADsXals</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Tang, Jing-Yu</creator><creator>Yuan, Ye</creator><creator>Ye, Bang-Jiao</creator><creator>Zhu, Zi‐An</creator><creator>Hou, Zhi-Long</creator><creator>Vassilopoulos, Nikolaos</creator><creator>Tang, Jian</creator><creator>Chen, Yu</creator><creator>Chen, Yu-Kai</creator><creator>Deng, Chang-Dong</creator><creator>Dong, Jing-Yu</creator><creator>Fan, Rui-Rui</creator><creator>He, Chong-Chao</creator><creator>Hong, Yang</creator><creator>Huang, Jin-Shu</creator><creator>Li, Yang</creator><creator>Meng, Xiang-Wei</creator><creator>Pan, Zi-Wen</creator><creator>Song, Ying-Peng</creator><creator>Sun, Ji-Lei</creator><creator>Wang, Li-Jiao</creator><creator>Wang, Meng-Lin</creator><creator>Wang, Peng-Cheng</creator><creator>Xie, Zong-Tai</creator><creator>Yadav, Nitin</creator><creator>Yan, Zhao-Hui</creator><creator>Yuan, Ling</creator><creator>Zhang, Gang</creator><creator>Zhang, Wen‐Qing</creator><creator>Zhao, Guang</creator><creator>Zhou, Lu-Ping</creator><creator>Zhou, Zhi-Hao</creator><creator>Zhu, Dong-Hui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5694-3783</orcidid></search><sort><creationdate>202305</creationdate><title>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</title><author>Tang, Jing-Yu ; Yuan, Ye ; Ye, Bang-Jiao ; Zhu, Zi‐An ; Hou, Zhi-Long ; Vassilopoulos, Nikolaos ; Tang, Jian ; Chen, Yu ; Chen, Yu-Kai ; Deng, Chang-Dong ; Dong, Jing-Yu ; Fan, Rui-Rui ; He, Chong-Chao ; Hong, Yang ; Huang, Jin-Shu ; Li, Yang ; Meng, Xiang-Wei ; Pan, Zi-Wen ; Song, Ying-Peng ; Sun, Ji-Lei ; Wang, Li-Jiao ; Wang, Meng-Lin ; Wang, Peng-Cheng ; Xie, Zong-Tai ; Yadav, Nitin ; Yan, Zhao-Hui ; Yuan, Ling ; Zhang, Gang ; Zhang, Wen‐Qing ; Zhao, Guang ; Zhou, Lu-Ping ; Zhou, Zhi-Hao ; Zhu, Dong-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-a7cf487242de5f05aaad3f90271f3d1ec3746506038f79edfd102f80d0131a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beam splitters</topic><topic>Magnetic properties</topic><topic>Magnets</topic><topic>Multidisciplinary research</topic><topic>muon beams</topic><topic>muon imaging</topic><topic>muon physics</topic><topic>Muon spin relaxation</topic><topic>Muon spin rotation</topic><topic>muon spin rotation/relaxation/resonance techniques</topic><topic>muonic X-rays</topic><topic>Muons</topic><topic>Neutrons</topic><topic>Particle beams</topic><topic>Pions</topic><topic>Solenoids</topic><topic>Spallation</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jing-Yu</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Ye, Bang-Jiao</creatorcontrib><creatorcontrib>Zhu, Zi‐An</creatorcontrib><creatorcontrib>Hou, Zhi-Long</creatorcontrib><creatorcontrib>Vassilopoulos, Nikolaos</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chen, Yu-Kai</creatorcontrib><creatorcontrib>Deng, Chang-Dong</creatorcontrib><creatorcontrib>Dong, Jing-Yu</creatorcontrib><creatorcontrib>Fan, Rui-Rui</creatorcontrib><creatorcontrib>He, Chong-Chao</creatorcontrib><creatorcontrib>Hong, Yang</creatorcontrib><creatorcontrib>Huang, Jin-Shu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Meng, Xiang-Wei</creatorcontrib><creatorcontrib>Pan, Zi-Wen</creatorcontrib><creatorcontrib>Song, Ying-Peng</creatorcontrib><creatorcontrib>Sun, Ji-Lei</creatorcontrib><creatorcontrib>Wang, Li-Jiao</creatorcontrib><creatorcontrib>Wang, Meng-Lin</creatorcontrib><creatorcontrib>Wang, Peng-Cheng</creatorcontrib><creatorcontrib>Xie, Zong-Tai</creatorcontrib><creatorcontrib>Yadav, Nitin</creatorcontrib><creatorcontrib>Yan, Zhao-Hui</creatorcontrib><creatorcontrib>Yuan, Ling</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Zhang, Wen‐Qing</creatorcontrib><creatorcontrib>Zhao, Guang</creatorcontrib><creatorcontrib>Zhou, Lu-Ping</creatorcontrib><creatorcontrib>Zhou, Zhi-Hao</creatorcontrib><creatorcontrib>Zhu, Dong-Hui</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jing-Yu</au><au>Yuan, Ye</au><au>Ye, Bang-Jiao</au><au>Zhu, Zi‐An</au><au>Hou, Zhi-Long</au><au>Vassilopoulos, Nikolaos</au><au>Tang, Jian</au><au>Chen, Yu</au><au>Chen, Yu-Kai</au><au>Deng, Chang-Dong</au><au>Dong, Jing-Yu</au><au>Fan, Rui-Rui</au><au>He, Chong-Chao</au><au>Hong, Yang</au><au>Huang, Jin-Shu</au><au>Li, Yang</au><au>Meng, Xiang-Wei</au><au>Pan, Zi-Wen</au><au>Song, Ying-Peng</au><au>Sun, Ji-Lei</au><au>Wang, Li-Jiao</au><au>Wang, Meng-Lin</au><au>Wang, Peng-Cheng</au><au>Xie, Zong-Tai</au><au>Yadav, Nitin</au><au>Yan, Zhao-Hui</au><au>Yuan, Ling</au><au>Zhang, Gang</au><au>Zhang, Wen‐Qing</au><au>Zhao, Guang</au><au>Zhou, Lu-Ping</au><au>Zhou, Zhi-Hao</au><au>Zhu, Dong-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EMuS – A Pulsed Muon Facility for Multidisciplinary Research</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2023-05</date><risdate>2023</risdate><volume>220</volume><issue>10</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>A pulsed muon facility (the so‐called EMuS) at the China Spallation Neutron Source (CSNS) has been studied since 2007. It aims for multidisciplinary applications but with a focus on those based on muon spin rotation/relaxation/resonance techniques. As a standalone facility, EMuS will take about 5% or 25 kW of the total beam power (500 kW) from the CSNS‐II accelerator complex. Two schemes have been designed: the baseline scheme is based on an inner conical target in graphite and superconducting solenoids for the capture and transport of pions and muons; the simplified scheme is based on a conventional thick target and room‐temperature magnets for transport. With the former, multiple kinds of muon beams can be provided, from surface muons, decay muons, negative muons, to low‐energy muons. Mainly surface muons are available with the simplified scheme. With a number of novel design concepts such as forward capture of pions/muons from a target station based on superconducting solenoids and triple spatial beam splitting of a muon beam, the design aspects of EMuS are presented here. The wide application potential and the R&D progress are also included.
At the Experimental Muon Source at the China Spallation Neutron Source, a novel target station design is adopted to produce high‐intensity and different muon beam types. A conical graphite target is installed inside a series of superconducting solenoids. With a tapered magnetic field and forward collection, surface muons, decay muons, and high‐momentum muons can be provided in the downstream beamline.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200426</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5694-3783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2023-05, Vol.220 (10), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2817231594 |
source | Access via Wiley Online Library |
subjects | Beam splitters Magnetic properties Magnets Multidisciplinary research muon beams muon imaging muon physics Muon spin relaxation Muon spin rotation muon spin rotation/relaxation/resonance techniques muonic X-rays Muons Neutrons Particle beams Pions Solenoids Spallation Superconductivity |
title | EMuS – A Pulsed Muon Facility for Multidisciplinary Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EMuS%20%E2%80%93%20A%20Pulsed%20Muon%20Facility%20for%20Multidisciplinary%20Research&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Tang,%20Jing-Yu&rft.date=2023-05&rft.volume=220&rft.issue=10&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200426&rft_dat=%3Cproquest_cross%3E2817231594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817231594&rft_id=info:pmid/&rfr_iscdi=true |