Experimental Study on the Scalability of Planetary Roller Extruders

This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2023-06, Vol.46 (6), p.1149-1155
Hauptverfasser: Radwan, Mario, Frerich, Sulamith Christiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1155
container_issue 6
container_start_page 1149
container_title Chemical engineering & technology
container_volume 46
creator Radwan, Mario
Frerich, Sulamith Christiane
description This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy. Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.
doi_str_mv 10.1002/ceat.202200523
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817201750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817201750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtXzwHPWydJ0-wey7JaoaDYeg5pMotb4m7NZrH996ZU9OhpmOF7M_MeIbcMJgyA31s0ccKBcwDJxRkZMclZNmVcnpMRFAIyJdnsklz1_RYAWGpGpKz2OwzNB7bReLqKgzvQrqXxHenKGm82jW9iGtX0xZsWowkH-tp5j4FW-xgGh6G_Jhe18T3e_NQxeXuo1uUiWz4_PpXzZWaFVCLjBlAJ7jYOWM6Ntbx2wsHMFQhSKTCqMLmZOms2uS3YTIFVjKPF5AhR1GJM7k57d6H7HLCPetsNoU0nNc-Z4sCUhERNTpQNXd8HrPUu-Ut_awb6GJQ-BqV_g0qC4iT4ajwe_qF1Wc3Xf9pvFG5sgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817201750</pqid></control><display><type>article</type><title>Experimental Study on the Scalability of Planetary Roller Extruders</title><source>Wiley Online Library All Journals</source><creator>Radwan, Mario ; Frerich, Sulamith Christiane</creator><creatorcontrib>Radwan, Mario ; Frerich, Sulamith Christiane</creatorcontrib><description>This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy. Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.202200523</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Extruders ; Extrusion ; Gaussian process ; Machine learning ; Material properties ; Parameters ; Planetary roller extruders ; Polymer processing ; Residence time distribution ; Scale‐up</subject><ispartof>Chemical engineering &amp; technology, 2023-06, Vol.46 (6), p.1149-1155</ispartof><rights>2023 The Authors. Chemical Engineering &amp; Technology published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</citedby><cites>FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</cites><orcidid>0000-0001-6126-2061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.202200523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.202200523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Radwan, Mario</creatorcontrib><creatorcontrib>Frerich, Sulamith Christiane</creatorcontrib><title>Experimental Study on the Scalability of Planetary Roller Extruders</title><title>Chemical engineering &amp; technology</title><description>This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy. Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Extruders</subject><subject>Extrusion</subject><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Parameters</subject><subject>Planetary roller extruders</subject><subject>Polymer processing</subject><subject>Residence time distribution</subject><subject>Scale‐up</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkEFLAzEQhYMoWKtXzwHPWydJ0-wey7JaoaDYeg5pMotb4m7NZrH996ZU9OhpmOF7M_MeIbcMJgyA31s0ccKBcwDJxRkZMclZNmVcnpMRFAIyJdnsklz1_RYAWGpGpKz2OwzNB7bReLqKgzvQrqXxHenKGm82jW9iGtX0xZsWowkH-tp5j4FW-xgGh6G_Jhe18T3e_NQxeXuo1uUiWz4_PpXzZWaFVCLjBlAJ7jYOWM6Ntbx2wsHMFQhSKTCqMLmZOms2uS3YTIFVjKPF5AhR1GJM7k57d6H7HLCPetsNoU0nNc-Z4sCUhERNTpQNXd8HrPUu-Ut_awb6GJQ-BqV_g0qC4iT4ajwe_qF1Wc3Xf9pvFG5sgg</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Radwan, Mario</creator><creator>Frerich, Sulamith Christiane</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6126-2061</orcidid></search><sort><creationdate>202306</creationdate><title>Experimental Study on the Scalability of Planetary Roller Extruders</title><author>Radwan, Mario ; Frerich, Sulamith Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Extruders</topic><topic>Extrusion</topic><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Parameters</topic><topic>Planetary roller extruders</topic><topic>Polymer processing</topic><topic>Residence time distribution</topic><topic>Scale‐up</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radwan, Mario</creatorcontrib><creatorcontrib>Frerich, Sulamith Christiane</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radwan, Mario</au><au>Frerich, Sulamith Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Study on the Scalability of Planetary Roller Extruders</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2023-06</date><risdate>2023</risdate><volume>46</volume><issue>6</issue><spage>1149</spage><epage>1155</epage><pages>1149-1155</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy. Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.202200523</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6126-2061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2023-06, Vol.46 (6), p.1149-1155
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_journals_2817201750
source Wiley Online Library All Journals
subjects Algorithms
Artificial neural networks
Extruders
Extrusion
Gaussian process
Machine learning
Material properties
Parameters
Planetary roller extruders
Polymer processing
Residence time distribution
Scale‐up
title Experimental Study on the Scalability of Planetary Roller Extruders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Study%20on%20the%20Scalability%20of%20Planetary%20Roller%20Extruders&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Radwan,%20Mario&rft.date=2023-06&rft.volume=46&rft.issue=6&rft.spage=1149&rft.epage=1155&rft.pages=1149-1155&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.202200523&rft_dat=%3Cproquest_cross%3E2817201750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817201750&rft_id=info:pmid/&rfr_iscdi=true