Experimental Study on the Scalability of Planetary Roller Extruders
This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating...
Gespeichert in:
Veröffentlicht in: | Chemical engineering & technology 2023-06, Vol.46 (6), p.1149-1155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1155 |
---|---|
container_issue | 6 |
container_start_page | 1149 |
container_title | Chemical engineering & technology |
container_volume | 46 |
creator | Radwan, Mario Frerich, Sulamith Christiane |
description | This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy.
Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy. |
doi_str_mv | 10.1002/ceat.202200523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817201750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817201750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtXzwHPWydJ0-wey7JaoaDYeg5pMotb4m7NZrH996ZU9OhpmOF7M_MeIbcMJgyA31s0ccKBcwDJxRkZMclZNmVcnpMRFAIyJdnsklz1_RYAWGpGpKz2OwzNB7bReLqKgzvQrqXxHenKGm82jW9iGtX0xZsWowkH-tp5j4FW-xgGh6G_Jhe18T3e_NQxeXuo1uUiWz4_PpXzZWaFVCLjBlAJ7jYOWM6Ntbx2wsHMFQhSKTCqMLmZOms2uS3YTIFVjKPF5AhR1GJM7k57d6H7HLCPetsNoU0nNc-Z4sCUhERNTpQNXd8HrPUu-Ut_awb6GJQ-BqV_g0qC4iT4ajwe_qF1Wc3Xf9pvFG5sgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817201750</pqid></control><display><type>article</type><title>Experimental Study on the Scalability of Planetary Roller Extruders</title><source>Wiley Online Library All Journals</source><creator>Radwan, Mario ; Frerich, Sulamith Christiane</creator><creatorcontrib>Radwan, Mario ; Frerich, Sulamith Christiane</creatorcontrib><description>This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy.
Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.202200523</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; Extruders ; Extrusion ; Gaussian process ; Machine learning ; Material properties ; Parameters ; Planetary roller extruders ; Polymer processing ; Residence time distribution ; Scale‐up</subject><ispartof>Chemical engineering & technology, 2023-06, Vol.46 (6), p.1149-1155</ispartof><rights>2023 The Authors. Chemical Engineering & Technology published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</citedby><cites>FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</cites><orcidid>0000-0001-6126-2061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.202200523$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.202200523$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Radwan, Mario</creatorcontrib><creatorcontrib>Frerich, Sulamith Christiane</creatorcontrib><title>Experimental Study on the Scalability of Planetary Roller Extruders</title><title>Chemical engineering & technology</title><description>This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy.
Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Extruders</subject><subject>Extrusion</subject><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Parameters</subject><subject>Planetary roller extruders</subject><subject>Polymer processing</subject><subject>Residence time distribution</subject><subject>Scale‐up</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkEFLAzEQhYMoWKtXzwHPWydJ0-wey7JaoaDYeg5pMotb4m7NZrH996ZU9OhpmOF7M_MeIbcMJgyA31s0ccKBcwDJxRkZMclZNmVcnpMRFAIyJdnsklz1_RYAWGpGpKz2OwzNB7bReLqKgzvQrqXxHenKGm82jW9iGtX0xZsWowkH-tp5j4FW-xgGh6G_Jhe18T3e_NQxeXuo1uUiWz4_PpXzZWaFVCLjBlAJ7jYOWM6Ntbx2wsHMFQhSKTCqMLmZOms2uS3YTIFVjKPF5AhR1GJM7k57d6H7HLCPetsNoU0nNc-Z4sCUhERNTpQNXd8HrPUu-Ut_awb6GJQ-BqV_g0qC4iT4ajwe_qF1Wc3Xf9pvFG5sgg</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Radwan, Mario</creator><creator>Frerich, Sulamith Christiane</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6126-2061</orcidid></search><sort><creationdate>202306</creationdate><title>Experimental Study on the Scalability of Planetary Roller Extruders</title><author>Radwan, Mario ; Frerich, Sulamith Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-2a0e732dbd0182acc2fd3d06d9e05770a79a8a4dcab8c91670c712ece220ee3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Extruders</topic><topic>Extrusion</topic><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Parameters</topic><topic>Planetary roller extruders</topic><topic>Polymer processing</topic><topic>Residence time distribution</topic><topic>Scale‐up</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radwan, Mario</creatorcontrib><creatorcontrib>Frerich, Sulamith Christiane</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radwan, Mario</au><au>Frerich, Sulamith Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Study on the Scalability of Planetary Roller Extruders</atitle><jtitle>Chemical engineering & technology</jtitle><date>2023-06</date><risdate>2023</risdate><volume>46</volume><issue>6</issue><spage>1149</spage><epage>1155</epage><pages>1149-1155</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy.
Scaling algorithms for planetary roller extruders on laboratory and production scale are developed in this contribution. In systematic studies, different operating conditions are analyzed with regard to process temperatures, pressure build‐up capacity, and residence time distribution. Machine learning models are applied to make predictions of process variables with high accuracy.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.202200523</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6126-2061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 2023-06, Vol.46 (6), p.1149-1155 |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_journals_2817201750 |
source | Wiley Online Library All Journals |
subjects | Algorithms Artificial neural networks Extruders Extrusion Gaussian process Machine learning Material properties Parameters Planetary roller extruders Polymer processing Residence time distribution Scale‐up |
title | Experimental Study on the Scalability of Planetary Roller Extruders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Study%20on%20the%20Scalability%20of%20Planetary%20Roller%20Extruders&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Radwan,%20Mario&rft.date=2023-06&rft.volume=46&rft.issue=6&rft.spage=1149&rft.epage=1155&rft.pages=1149-1155&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.202200523&rft_dat=%3Cproquest_cross%3E2817201750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817201750&rft_id=info:pmid/&rfr_iscdi=true |