ANALYSIS THE CHARACTERIZATION OF SCINTILLATION AND CRYSTAL GROWTH OF HALIDES

For X-ray and -ray detector applications, Elpasolite halides scintillation crystals have shown to be critical materials. This family of Chloro-elpasolite crystals includes Cs2KLaCl6:4 percentCe (CKLC) and Cs2KCeCl6 (CKCC), both of which exhibit new scintillation characteristics. We describe the use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (17), p.2193
Hauptverfasser: Patel, Dipeshkumar Babubhai, Rathore, DrSanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 2193
container_title NeuroQuantology
container_volume 20
creator Patel, Dipeshkumar Babubhai
Rathore, DrSanjay
description For X-ray and -ray detector applications, Elpasolite halides scintillation crystals have shown to be critical materials. This family of Chloro-elpasolite crystals includes Cs2KLaCl6:4 percentCe (CKLC) and Cs2KCeCl6 (CKCC), both of which exhibit new scintillation characteristics. We describe the use of vertical Bridgman techniques to grow CKLC and CKCC crystals. The PXRD patterns show that both crystals have a cubic crystal structure, as shown by the shapes. In terms of their photoluminescence excitation and emission spectrum, the fluorescence decay time of the CKLC and CKCC crystals was about 49.7 and 33.8 ns, respectively, for these two types of crystals. It was found that the 662 keV -rays that were excited by the source 137Cs had an energy resolution of 6.6 percent and 5.2 percent. Scintillation decay times for CKLC crystal were 33 percent slower than for CKCC crystal and 67 percent slower than for the latter. The former's were only 5 percent slower and only 81 nanoseconds slower (95 percent ).
doi_str_mv 10.48047/Nq.2022.20.17.Nq880284
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2816745821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816745821</sourcerecordid><originalsourceid>FETCH-proquest_journals_28167458213</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWB_fYMB16036isuQVhMIKTQB0Y24qIsi1rb2_63oB7iZA3MGoTWBIGIQpVvTBhQoHRGQNDAtY0BZNEEeCSH0YxLDDM37vgaIU9glHtLccH2yymIncywkL7lweanO3KnC4GKPrVDGKa2_gpsMi_JkHdf4UBZHJz-N5FpluV2i6e1676vVbxdos8-dkP6za9qh6l-Xuhm6x3hdKCNJGsWMkvC_6g3HsTxV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816745821</pqid></control><display><type>article</type><title>ANALYSIS THE CHARACTERIZATION OF SCINTILLATION AND CRYSTAL GROWTH OF HALIDES</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Patel, Dipeshkumar Babubhai ; Rathore, DrSanjay</creator><creatorcontrib>Patel, Dipeshkumar Babubhai ; Rathore, DrSanjay</creatorcontrib><description>For X-ray and -ray detector applications, Elpasolite halides scintillation crystals have shown to be critical materials. This family of Chloro-elpasolite crystals includes Cs2KLaCl6:4 percentCe (CKLC) and Cs2KCeCl6 (CKCC), both of which exhibit new scintillation characteristics. We describe the use of vertical Bridgman techniques to grow CKLC and CKCC crystals. The PXRD patterns show that both crystals have a cubic crystal structure, as shown by the shapes. In terms of their photoluminescence excitation and emission spectrum, the fluorescence decay time of the CKLC and CKCC crystals was about 49.7 and 33.8 ns, respectively, for these two types of crystals. It was found that the 662 keV -rays that were excited by the source 137Cs had an energy resolution of 6.6 percent and 5.2 percent. Scintillation decay times for CKLC crystal were 33 percent slower than for CKCC crystal and 67 percent slower than for the latter. The former's were only 5 percent slower and only 81 nanoseconds slower (95 percent ).</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.48047/Nq.2022.20.17.Nq880284</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Bridgman method ; Cesium 137 ; Cesium isotopes ; Crystal growth ; Crystal structure ; Crystals ; Decay ; Energy resolution ; Excitation spectra ; Halides ; Photoluminescence ; Scintillation</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (17), p.2193</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Patel, Dipeshkumar Babubhai</creatorcontrib><creatorcontrib>Rathore, DrSanjay</creatorcontrib><title>ANALYSIS THE CHARACTERIZATION OF SCINTILLATION AND CRYSTAL GROWTH OF HALIDES</title><title>NeuroQuantology</title><description>For X-ray and -ray detector applications, Elpasolite halides scintillation crystals have shown to be critical materials. This family of Chloro-elpasolite crystals includes Cs2KLaCl6:4 percentCe (CKLC) and Cs2KCeCl6 (CKCC), both of which exhibit new scintillation characteristics. We describe the use of vertical Bridgman techniques to grow CKLC and CKCC crystals. The PXRD patterns show that both crystals have a cubic crystal structure, as shown by the shapes. In terms of their photoluminescence excitation and emission spectrum, the fluorescence decay time of the CKLC and CKCC crystals was about 49.7 and 33.8 ns, respectively, for these two types of crystals. It was found that the 662 keV -rays that were excited by the source 137Cs had an energy resolution of 6.6 percent and 5.2 percent. Scintillation decay times for CKLC crystal were 33 percent slower than for CKCC crystal and 67 percent slower than for the latter. The former's were only 5 percent slower and only 81 nanoseconds slower (95 percent ).</description><subject>Bridgman method</subject><subject>Cesium 137</subject><subject>Cesium isotopes</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Decay</subject><subject>Energy resolution</subject><subject>Excitation spectra</subject><subject>Halides</subject><subject>Photoluminescence</subject><subject>Scintillation</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNissKwjAUBYMgWB_fYMB16036isuQVhMIKTQB0Y24qIsi1rb2_63oB7iZA3MGoTWBIGIQpVvTBhQoHRGQNDAtY0BZNEEeCSH0YxLDDM37vgaIU9glHtLccH2yymIncywkL7lweanO3KnC4GKPrVDGKa2_gpsMi_JkHdf4UBZHJz-N5FpluV2i6e1676vVbxdos8-dkP6za9qh6l-Xuhm6x3hdKCNJGsWMkvC_6g3HsTxV</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Patel, Dipeshkumar Babubhai</creator><creator>Rathore, DrSanjay</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>ANALYSIS THE CHARACTERIZATION OF SCINTILLATION AND CRYSTAL GROWTH OF HALIDES</title><author>Patel, Dipeshkumar Babubhai ; Rathore, DrSanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28167458213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridgman method</topic><topic>Cesium 137</topic><topic>Cesium isotopes</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Decay</topic><topic>Energy resolution</topic><topic>Excitation spectra</topic><topic>Halides</topic><topic>Photoluminescence</topic><topic>Scintillation</topic><toplevel>online_resources</toplevel><creatorcontrib>Patel, Dipeshkumar Babubhai</creatorcontrib><creatorcontrib>Rathore, DrSanjay</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Dipeshkumar Babubhai</au><au>Rathore, DrSanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANALYSIS THE CHARACTERIZATION OF SCINTILLATION AND CRYSTAL GROWTH OF HALIDES</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>17</issue><spage>2193</spage><pages>2193-</pages><eissn>1303-5150</eissn><abstract>For X-ray and -ray detector applications, Elpasolite halides scintillation crystals have shown to be critical materials. This family of Chloro-elpasolite crystals includes Cs2KLaCl6:4 percentCe (CKLC) and Cs2KCeCl6 (CKCC), both of which exhibit new scintillation characteristics. We describe the use of vertical Bridgman techniques to grow CKLC and CKCC crystals. The PXRD patterns show that both crystals have a cubic crystal structure, as shown by the shapes. In terms of their photoluminescence excitation and emission spectrum, the fluorescence decay time of the CKLC and CKCC crystals was about 49.7 and 33.8 ns, respectively, for these two types of crystals. It was found that the 662 keV -rays that were excited by the source 137Cs had an energy resolution of 6.6 percent and 5.2 percent. Scintillation decay times for CKLC crystal were 33 percent slower than for CKCC crystal and 67 percent slower than for the latter. The former's were only 5 percent slower and only 81 nanoseconds slower (95 percent ).</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.48047/Nq.2022.20.17.Nq880284</doi></addata></record>
fulltext fulltext
identifier EISSN: 1303-5150
ispartof NeuroQuantology, 2022-01, Vol.20 (17), p.2193
issn 1303-5150
language eng
recordid cdi_proquest_journals_2816745821
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bridgman method
Cesium 137
Cesium isotopes
Crystal growth
Crystal structure
Crystals
Decay
Energy resolution
Excitation spectra
Halides
Photoluminescence
Scintillation
title ANALYSIS THE CHARACTERIZATION OF SCINTILLATION AND CRYSTAL GROWTH OF HALIDES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANALYSIS%20THE%20CHARACTERIZATION%20OF%20SCINTILLATION%20AND%20CRYSTAL%20GROWTH%20OF%20HALIDES&rft.jtitle=NeuroQuantology&rft.au=Patel,%20Dipeshkumar%20Babubhai&rft.date=2022-01-01&rft.volume=20&rft.issue=17&rft.spage=2193&rft.pages=2193-&rft.eissn=1303-5150&rft_id=info:doi/10.48047/Nq.2022.20.17.Nq880284&rft_dat=%3Cproquest%3E2816745821%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816745821&rft_id=info:pmid/&rfr_iscdi=true