UNSUPERVISED OPTIMIZATION FOR BRAIN EEG SIGNAL ARTIFACT ERADICATION USING LOWER ORDER IIR FILTER DESIGN
While being acquired, the brian electroencephalography (EEG) signals are subject to a variety of motion artifacts. Therefore, it is crucial to get rid of these artifacts at the beginning of the investigation of human diseases. The removal of the motions using current artifact removal techniques is e...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (16), p.2614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 2614 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Panchol, Deepak Venkatadri M Rajeev Goyal Rawat, Paresh |
description | While being acquired, the brian electroencephalography (EEG) signals are subject to a variety of motion artifacts. Therefore, it is crucial to get rid of these artifacts at the beginning of the investigation of human diseases. The removal of the motions using current artifact removal techniques is either too complicated or ineffective. The goal is to create a filter that simultaneously removes all motion artifacts. The idea presented in this study is to create the best lower order IIR filter possible to eliminate noise, eye blinks, and muscular artifacts from EEG signals. An IIR filter is initially designed using a hybrid combination of pass and cutoff band filters. After that, the approach of unsupervised transfer function (TF) optimization is used to replicate the ideal filter coefficients. For the design of lower order filters, the optimum coefficients are applied. Performance of the filter is evaluated on multichannel real EEG signal database. The parametric evaluation is presented using order of TF for fitters designs and qualitative evaluation based o the removal of eye blink peaks for the EEG signal databases |
doi_str_mv | 10.48047/NQ.2022.20.16.NQ880264 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2816741605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816741605</sourcerecordid><originalsourceid>FETCH-proquest_journals_28167416053</originalsourceid><addsrcrecordid>eNqNi81qwkAUhQehoK0-gxdcm96ZJJN0OU0m8UKc0clEwY24sIKIf6nv35T2Adx858D5DmNjjkGUYpS8m2UgUIgOAZeBWaYpChn12ICHGE5jHmOfvbbtETFO8EMO2KExdbPQbkW1zsEuPM1pozxZA4V18OkUGdC6hJpKoypQzlOhMg_aqZyyP7OpyZRQ2bV2YF3ekchBQZXvaq5_r0P28rU7tfvRf76xSaF9Npte75fbY99-b4-Xx_3cTVuRcplEXGIcPmf9ACaBQ3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816741605</pqid></control><display><type>article</type><title>UNSUPERVISED OPTIMIZATION FOR BRAIN EEG SIGNAL ARTIFACT ERADICATION USING LOWER ORDER IIR FILTER DESIGN</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Panchol, Deepak ; Venkatadri M Rajeev Goyal ; Rawat, Paresh</creator><creatorcontrib>Panchol, Deepak ; Venkatadri M Rajeev Goyal ; Rawat, Paresh</creatorcontrib><description>While being acquired, the brian electroencephalography (EEG) signals are subject to a variety of motion artifacts. Therefore, it is crucial to get rid of these artifacts at the beginning of the investigation of human diseases. The removal of the motions using current artifact removal techniques is either too complicated or ineffective. The goal is to create a filter that simultaneously removes all motion artifacts. The idea presented in this study is to create the best lower order IIR filter possible to eliminate noise, eye blinks, and muscular artifacts from EEG signals. An IIR filter is initially designed using a hybrid combination of pass and cutoff band filters. After that, the approach of unsupervised transfer function (TF) optimization is used to replicate the ideal filter coefficients. For the design of lower order filters, the optimum coefficients are applied. Performance of the filter is evaluated on multichannel real EEG signal database. The parametric evaluation is presented using order of TF for fitters designs and qualitative evaluation based o the removal of eye blink peaks for the EEG signal databases</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.48047/NQ.2022.20.16.NQ880264</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Design ; Electroencephalography ; Filter design (mathematics) ; IIR filters ; Optimization ; Transfer functions</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (16), p.2614</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Panchol, Deepak</creatorcontrib><creatorcontrib>Venkatadri M Rajeev Goyal</creatorcontrib><creatorcontrib>Rawat, Paresh</creatorcontrib><title>UNSUPERVISED OPTIMIZATION FOR BRAIN EEG SIGNAL ARTIFACT ERADICATION USING LOWER ORDER IIR FILTER DESIGN</title><title>NeuroQuantology</title><description>While being acquired, the brian electroencephalography (EEG) signals are subject to a variety of motion artifacts. Therefore, it is crucial to get rid of these artifacts at the beginning of the investigation of human diseases. The removal of the motions using current artifact removal techniques is either too complicated or ineffective. The goal is to create a filter that simultaneously removes all motion artifacts. The idea presented in this study is to create the best lower order IIR filter possible to eliminate noise, eye blinks, and muscular artifacts from EEG signals. An IIR filter is initially designed using a hybrid combination of pass and cutoff band filters. After that, the approach of unsupervised transfer function (TF) optimization is used to replicate the ideal filter coefficients. For the design of lower order filters, the optimum coefficients are applied. Performance of the filter is evaluated on multichannel real EEG signal database. The parametric evaluation is presented using order of TF for fitters designs and qualitative evaluation based o the removal of eye blink peaks for the EEG signal databases</description><subject>Design</subject><subject>Electroencephalography</subject><subject>Filter design (mathematics)</subject><subject>IIR filters</subject><subject>Optimization</subject><subject>Transfer functions</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNi81qwkAUhQehoK0-gxdcm96ZJJN0OU0m8UKc0clEwY24sIKIf6nv35T2Adx858D5DmNjjkGUYpS8m2UgUIgOAZeBWaYpChn12ICHGE5jHmOfvbbtETFO8EMO2KExdbPQbkW1zsEuPM1pozxZA4V18OkUGdC6hJpKoypQzlOhMg_aqZyyP7OpyZRQ2bV2YF3ekchBQZXvaq5_r0P28rU7tfvRf76xSaF9Npte75fbY99-b4-Xx_3cTVuRcplEXGIcPmf9ACaBQ3o</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Panchol, Deepak</creator><creator>Venkatadri M Rajeev Goyal</creator><creator>Rawat, Paresh</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>UNSUPERVISED OPTIMIZATION FOR BRAIN EEG SIGNAL ARTIFACT ERADICATION USING LOWER ORDER IIR FILTER DESIGN</title><author>Panchol, Deepak ; Venkatadri M Rajeev Goyal ; Rawat, Paresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28167416053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Design</topic><topic>Electroencephalography</topic><topic>Filter design (mathematics)</topic><topic>IIR filters</topic><topic>Optimization</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Panchol, Deepak</creatorcontrib><creatorcontrib>Venkatadri M Rajeev Goyal</creatorcontrib><creatorcontrib>Rawat, Paresh</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panchol, Deepak</au><au>Venkatadri M Rajeev Goyal</au><au>Rawat, Paresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNSUPERVISED OPTIMIZATION FOR BRAIN EEG SIGNAL ARTIFACT ERADICATION USING LOWER ORDER IIR FILTER DESIGN</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>16</issue><spage>2614</spage><pages>2614-</pages><eissn>1303-5150</eissn><abstract>While being acquired, the brian electroencephalography (EEG) signals are subject to a variety of motion artifacts. Therefore, it is crucial to get rid of these artifacts at the beginning of the investigation of human diseases. The removal of the motions using current artifact removal techniques is either too complicated or ineffective. The goal is to create a filter that simultaneously removes all motion artifacts. The idea presented in this study is to create the best lower order IIR filter possible to eliminate noise, eye blinks, and muscular artifacts from EEG signals. An IIR filter is initially designed using a hybrid combination of pass and cutoff band filters. After that, the approach of unsupervised transfer function (TF) optimization is used to replicate the ideal filter coefficients. For the design of lower order filters, the optimum coefficients are applied. Performance of the filter is evaluated on multichannel real EEG signal database. The parametric evaluation is presented using order of TF for fitters designs and qualitative evaluation based o the removal of eye blink peaks for the EEG signal databases</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.48047/NQ.2022.20.16.NQ880264</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (16), p.2614 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2816741605 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Design Electroencephalography Filter design (mathematics) IIR filters Optimization Transfer functions |
title | UNSUPERVISED OPTIMIZATION FOR BRAIN EEG SIGNAL ARTIFACT ERADICATION USING LOWER ORDER IIR FILTER DESIGN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNSUPERVISED%20OPTIMIZATION%20FOR%20BRAIN%20EEG%20SIGNAL%20ARTIFACT%20ERADICATION%20USING%20LOWER%20ORDER%20IIR%20FILTER%20DESIGN&rft.jtitle=NeuroQuantology&rft.au=Panchol,%20Deepak&rft.date=2022-01-01&rft.volume=20&rft.issue=16&rft.spage=2614&rft.pages=2614-&rft.eissn=1303-5150&rft_id=info:doi/10.48047/NQ.2022.20.16.NQ880264&rft_dat=%3Cproquest%3E2816741605%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816741605&rft_id=info:pmid/&rfr_iscdi=true |