Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)
Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (16), p.5056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 5056 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Katkam, Premnath Anbalagan, P V V S S S Balaram |
description | Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches |
doi_str_mv | 10.48047/NQ.2022.20.16.NQ880515 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2816739498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816739498</sourcerecordid><originalsourceid>FETCH-proquest_journals_28167394983</originalsourceid><addsrcrecordid>eNqNTstOwzAQtJCQKJRvYCUucGhw3s4xvMSpUhSkHisTO4mLkw12XFQ-ga_GID6gh9kdza5mhpCrkAYJo0l-t66CiEaRH0GYBeuKMZqG6QlZhDGNV57SM3Ju7Y7SNKdFtiDfj9KqbgQ-Cg-uD1ZZwNZzKAWfZrWXsEHz3mr8hLrppXBajR2U02SQNz20aKDCGgYU8u-Ce2mgP7wZJaDR6AQ4-6vf8xnQGw7qi88KfaTu0Ki5H-Cm3NTl7ZKctlxbefm_L8j189Prw8vKJ304aeftDp3xHe02YmGWx0VSsPi4rx_DrFng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816739498</pqid></control><display><type>article</type><title>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Katkam, Premnath ; Anbalagan, P ; V V S S S Balaram</creator><creatorcontrib>Katkam, Premnath ; Anbalagan, P ; V V S S S Balaram</creatorcontrib><description>Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.48047/NQ.2022.20.16.NQ880515</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Cloud computing ; Computer science ; Energy consumption ; Heuristic ; Internet of Things ; Optimization ; Optimization algorithms ; Quality of service ; Scheduling ; Workflow</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (16), p.5056</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Katkam, Premnath</creatorcontrib><creatorcontrib>Anbalagan, P</creatorcontrib><creatorcontrib>V V S S S Balaram</creatorcontrib><title>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</title><title>NeuroQuantology</title><description>Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer science</subject><subject>Energy consumption</subject><subject>Heuristic</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Quality of service</subject><subject>Scheduling</subject><subject>Workflow</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNTstOwzAQtJCQKJRvYCUucGhw3s4xvMSpUhSkHisTO4mLkw12XFQ-ga_GID6gh9kdza5mhpCrkAYJo0l-t66CiEaRH0GYBeuKMZqG6QlZhDGNV57SM3Ju7Y7SNKdFtiDfj9KqbgQ-Cg-uD1ZZwNZzKAWfZrWXsEHz3mr8hLrppXBajR2U02SQNz20aKDCGgYU8u-Ce2mgP7wZJaDR6AQ4-6vf8xnQGw7qi88KfaTu0Ki5H-Cm3NTl7ZKctlxbefm_L8j189Prw8vKJ304aeftDp3xHe02YmGWx0VSsPi4rx_DrFng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Katkam, Premnath</creator><creator>Anbalagan, P</creator><creator>V V S S S Balaram</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</title><author>Katkam, Premnath ; Anbalagan, P ; V V S S S Balaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28167394983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer science</topic><topic>Energy consumption</topic><topic>Heuristic</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Quality of service</topic><topic>Scheduling</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Katkam, Premnath</creatorcontrib><creatorcontrib>Anbalagan, P</creatorcontrib><creatorcontrib>V V S S S Balaram</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katkam, Premnath</au><au>Anbalagan, P</au><au>V V S S S Balaram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>16</issue><spage>5056</spage><pages>5056-</pages><eissn>1303-5150</eissn><abstract>Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.48047/NQ.2022.20.16.NQ880515</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (16), p.5056 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2816739498 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Cloud computing Computer science Energy consumption Heuristic Internet of Things Optimization Optimization algorithms Quality of service Scheduling Workflow |
title | Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20analysis%20of%20an%20Adaptive%20Workflow%20Scheduling%20Approach%20for%20QoS%20modeling%20over%20hybrid%20cloud%20using%20Bat%20optimization%20algorithm%20(AWSA)&rft.jtitle=NeuroQuantology&rft.au=Katkam,%20Premnath&rft.date=2022-01-01&rft.volume=20&rft.issue=16&rft.spage=5056&rft.pages=5056-&rft.eissn=1303-5150&rft_id=info:doi/10.48047/NQ.2022.20.16.NQ880515&rft_dat=%3Cproquest%3E2816739498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816739498&rft_id=info:pmid/&rfr_iscdi=true |