Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)

Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (16), p.5056
Hauptverfasser: Katkam, Premnath, Anbalagan, P, V V S S S Balaram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 5056
container_title NeuroQuantology
container_volume 20
creator Katkam, Premnath
Anbalagan, P
V V S S S Balaram
description Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches
doi_str_mv 10.48047/NQ.2022.20.16.NQ880515
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2816739498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816739498</sourcerecordid><originalsourceid>FETCH-proquest_journals_28167394983</originalsourceid><addsrcrecordid>eNqNTstOwzAQtJCQKJRvYCUucGhw3s4xvMSpUhSkHisTO4mLkw12XFQ-ga_GID6gh9kdza5mhpCrkAYJo0l-t66CiEaRH0GYBeuKMZqG6QlZhDGNV57SM3Ju7Y7SNKdFtiDfj9KqbgQ-Cg-uD1ZZwNZzKAWfZrWXsEHz3mr8hLrppXBajR2U02SQNz20aKDCGgYU8u-Ce2mgP7wZJaDR6AQ4-6vf8xnQGw7qi88KfaTu0Ki5H-Cm3NTl7ZKctlxbefm_L8j189Prw8vKJ304aeftDp3xHe02YmGWx0VSsPi4rx_DrFng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816739498</pqid></control><display><type>article</type><title>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Katkam, Premnath ; Anbalagan, P ; V V S S S Balaram</creator><creatorcontrib>Katkam, Premnath ; Anbalagan, P ; V V S S S Balaram</creatorcontrib><description>Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.48047/NQ.2022.20.16.NQ880515</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Cloud computing ; Computer science ; Energy consumption ; Heuristic ; Internet of Things ; Optimization ; Optimization algorithms ; Quality of service ; Scheduling ; Workflow</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (16), p.5056</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Katkam, Premnath</creatorcontrib><creatorcontrib>Anbalagan, P</creatorcontrib><creatorcontrib>V V S S S Balaram</creatorcontrib><title>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</title><title>NeuroQuantology</title><description>Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computer science</subject><subject>Energy consumption</subject><subject>Heuristic</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Quality of service</subject><subject>Scheduling</subject><subject>Workflow</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNTstOwzAQtJCQKJRvYCUucGhw3s4xvMSpUhSkHisTO4mLkw12XFQ-ga_GID6gh9kdza5mhpCrkAYJo0l-t66CiEaRH0GYBeuKMZqG6QlZhDGNV57SM3Ju7Y7SNKdFtiDfj9KqbgQ-Cg-uD1ZZwNZzKAWfZrWXsEHz3mr8hLrppXBajR2U02SQNz20aKDCGgYU8u-Ce2mgP7wZJaDR6AQ4-6vf8xnQGw7qi88KfaTu0Ki5H-Cm3NTl7ZKctlxbefm_L8j189Prw8vKJ304aeftDp3xHe02YmGWx0VSsPi4rx_DrFng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Katkam, Premnath</creator><creator>Anbalagan, P</creator><creator>V V S S S Balaram</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</title><author>Katkam, Premnath ; Anbalagan, P ; V V S S S Balaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28167394983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computer science</topic><topic>Energy consumption</topic><topic>Heuristic</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Quality of service</topic><topic>Scheduling</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Katkam, Premnath</creatorcontrib><creatorcontrib>Anbalagan, P</creatorcontrib><creatorcontrib>V V S S S Balaram</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katkam, Premnath</au><au>Anbalagan, P</au><au>V V S S S Balaram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>16</issue><spage>5056</spage><pages>5056-</pages><eissn>1303-5150</eissn><abstract>Cloud computing provides tremendous infrastructure facility for the execution of multiple service workflows and commercial resource demandable applications by offering dynamic scalable, reliable and flexible computing platform. Analysis of performance execution of resource demandable services, which require optimal resources with minimum execution time with specified Quality of Service (QoS) suggests on need for design of scheduling algorithms. In this proposed work, a cost supported with energy based workflow scheduling algorithm is proposed whose performance is experimented over interactive AWSA framework whose results can be verified for metrics such as end to end delay, load balancing and throughput for variable tasks on execution using CloudSim. The performance of AWSA over end to end delay and processing time outperforms other approaches</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.48047/NQ.2022.20.16.NQ880515</doi></addata></record>
fulltext fulltext
identifier EISSN: 1303-5150
ispartof NeuroQuantology, 2022-01, Vol.20 (16), p.5056
issn 1303-5150
language eng
recordid cdi_proquest_journals_2816739498
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Cloud computing
Computer science
Energy consumption
Heuristic
Internet of Things
Optimization
Optimization algorithms
Quality of service
Scheduling
Workflow
title Design and analysis of an Adaptive Workflow Scheduling Approach for QoS modeling over hybrid cloud using Bat optimization algorithm (AWSA)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20analysis%20of%20an%20Adaptive%20Workflow%20Scheduling%20Approach%20for%20QoS%20modeling%20over%20hybrid%20cloud%20using%20Bat%20optimization%20algorithm%20(AWSA)&rft.jtitle=NeuroQuantology&rft.au=Katkam,%20Premnath&rft.date=2022-01-01&rft.volume=20&rft.issue=16&rft.spage=5056&rft.pages=5056-&rft.eissn=1303-5150&rft_id=info:doi/10.48047/NQ.2022.20.16.NQ880515&rft_dat=%3Cproquest%3E2816739498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816739498&rft_id=info:pmid/&rfr_iscdi=true