RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach

This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) inste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-04, Vol.79 (15-16), p.9901-9919
Hauptverfasser: Kirubakaran, J., Prasanna Venkatesan, G. K. D., Baskar, S., Kumaresan, M., Annamalai, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9919
container_issue 15-16
container_start_page 9901
container_title Multimedia tools and applications
container_volume 79
creator Kirubakaran, J.
Prasanna Venkatesan, G. K. D.
Baskar, S.
Kumaresan, M.
Annamalai, S.
description This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.
doi_str_mv 10.1007/s11042-019-7259-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2816239419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816239419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</originalsourceid><addsrcrecordid>eNp1kctqwzAQRU1poenjA7ob6NqtRrItu7uQpg8ItIR0LWRJdhQcy5XiQj6m_1qFFLrqagbmnjsz3CS5QXKHhPD7gEgymhKsUk7zKmUnyQRzzlLOKZ7GnpUk5TnB8-QihA0hWOQ0myTfy_lqOZ2t5o8wXa5eZ4v5A7x7o63aWdeDa0BZ79cu2ADaBiODgca7LXipretca8MOOvtlPGwPlOzAbmVrYAy2b2G9r73VoNw4dEbDr630exik9QHiis71rd2N2vaR1W4rbQ9yGLyTan2VnDWyC-b6t14mH0_z1ewlXbw9v86mi1RhgSzFBiujVFkynWHNy6KpSKGorJVuak04k5xKk0tdsKIuWU3zMjN1pXRe5iaL88vk9ugb136OJuzExo0-HhQELbGgrMqwiio8qpR3IXjTiMHHZ_1eIBGHFMQxBRFTEIcUBIsMPTIhavvW-D_n_6EfZa-Mqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816239419</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Kirubakaran, J. ; Prasanna Venkatesan, G. K. D. ; Baskar, S. ; Kumaresan, M. ; Annamalai, S.</creator><creatorcontrib>Kirubakaran, J. ; Prasanna Venkatesan, G. K. D. ; Baskar, S. ; Kumaresan, M. ; Annamalai, S.</creatorcontrib><description>This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-7259-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-04, Vol.79 (15-16), p.9901-9919</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</citedby><cites>FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-7259-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-7259-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kirubakaran, J.</creatorcontrib><creatorcontrib>Prasanna Venkatesan, G. K. D.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Kumaresan, M.</creatorcontrib><creatorcontrib>Annamalai, S.</creatorcontrib><title>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctqwzAQRU1poenjA7ob6NqtRrItu7uQpg8ItIR0LWRJdhQcy5XiQj6m_1qFFLrqagbmnjsz3CS5QXKHhPD7gEgymhKsUk7zKmUnyQRzzlLOKZ7GnpUk5TnB8-QihA0hWOQ0myTfy_lqOZ2t5o8wXa5eZ4v5A7x7o63aWdeDa0BZ79cu2ADaBiODgca7LXipretca8MOOvtlPGwPlOzAbmVrYAy2b2G9r73VoNw4dEbDr630exik9QHiis71rd2N2vaR1W4rbQ9yGLyTan2VnDWyC-b6t14mH0_z1ewlXbw9v86mi1RhgSzFBiujVFkynWHNy6KpSKGorJVuak04k5xKk0tdsKIuWU3zMjN1pXRe5iaL88vk9ugb136OJuzExo0-HhQELbGgrMqwiio8qpR3IXjTiMHHZ_1eIBGHFMQxBRFTEIcUBIsMPTIhavvW-D_n_6EfZa-Mqg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kirubakaran, J.</creator><creator>Prasanna Venkatesan, G. K. D.</creator><creator>Baskar, S.</creator><creator>Kumaresan, M.</creator><creator>Annamalai, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</title><author>Kirubakaran, J. ; Prasanna Venkatesan, G. K. D. ; Baskar, S. ; Kumaresan, M. ; Annamalai, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirubakaran, J.</creatorcontrib><creatorcontrib>Prasanna Venkatesan, G. K. D.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Kumaresan, M.</creatorcontrib><creatorcontrib>Annamalai, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirubakaran, J.</au><au>Prasanna Venkatesan, G. K. D.</au><au>Baskar, S.</au><au>Kumaresan, M.</au><au>Annamalai, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>79</volume><issue>15-16</issue><spage>9901</spage><epage>9919</epage><pages>9901-9919</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-7259-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-04, Vol.79 (15-16), p.9901-9919
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2816239419
source Springer Nature - Complete Springer Journals
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Multimedia Information Systems
Special Purpose and Application-Based Systems
title RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Prediction%20of%20cirrhosis%20disease%20from%20radiologist%20liver%20medical%20image%20using%20hybrid%20coupled%20dictionary%20pairs%20on%20longitudinal%20domain%20approach&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kirubakaran,%20J.&rft.date=2020-04-01&rft.volume=79&rft.issue=15-16&rft.spage=9901&rft.epage=9919&rft.pages=9901-9919&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-7259-3&rft_dat=%3Cproquest_cross%3E2816239419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816239419&rft_id=info:pmid/&rfr_iscdi=true