RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach
This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) inste...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-04, Vol.79 (15-16), p.9901-9919 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9919 |
---|---|
container_issue | 15-16 |
container_start_page | 9901 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Kirubakaran, J. Prasanna Venkatesan, G. K. D. Baskar, S. Kumaresan, M. Annamalai, S. |
description | This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer. |
doi_str_mv | 10.1007/s11042-019-7259-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2816239419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816239419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</originalsourceid><addsrcrecordid>eNp1kctqwzAQRU1poenjA7ob6NqtRrItu7uQpg8ItIR0LWRJdhQcy5XiQj6m_1qFFLrqagbmnjsz3CS5QXKHhPD7gEgymhKsUk7zKmUnyQRzzlLOKZ7GnpUk5TnB8-QihA0hWOQ0myTfy_lqOZ2t5o8wXa5eZ4v5A7x7o63aWdeDa0BZ79cu2ADaBiODgca7LXipretca8MOOvtlPGwPlOzAbmVrYAy2b2G9r73VoNw4dEbDr630exik9QHiis71rd2N2vaR1W4rbQ9yGLyTan2VnDWyC-b6t14mH0_z1ewlXbw9v86mi1RhgSzFBiujVFkynWHNy6KpSKGorJVuak04k5xKk0tdsKIuWU3zMjN1pXRe5iaL88vk9ugb136OJuzExo0-HhQELbGgrMqwiio8qpR3IXjTiMHHZ_1eIBGHFMQxBRFTEIcUBIsMPTIhavvW-D_n_6EfZa-Mqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816239419</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Kirubakaran, J. ; Prasanna Venkatesan, G. K. D. ; Baskar, S. ; Kumaresan, M. ; Annamalai, S.</creator><creatorcontrib>Kirubakaran, J. ; Prasanna Venkatesan, G. K. D. ; Baskar, S. ; Kumaresan, M. ; Annamalai, S.</creatorcontrib><description>This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-7259-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-04, Vol.79 (15-16), p.9901-9919</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</citedby><cites>FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-7259-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-7259-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kirubakaran, J.</creatorcontrib><creatorcontrib>Prasanna Venkatesan, G. K. D.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Kumaresan, M.</creatorcontrib><creatorcontrib>Annamalai, S.</creatorcontrib><title>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctqwzAQRU1poenjA7ob6NqtRrItu7uQpg8ItIR0LWRJdhQcy5XiQj6m_1qFFLrqagbmnjsz3CS5QXKHhPD7gEgymhKsUk7zKmUnyQRzzlLOKZ7GnpUk5TnB8-QihA0hWOQ0myTfy_lqOZ2t5o8wXa5eZ4v5A7x7o63aWdeDa0BZ79cu2ADaBiODgca7LXipretca8MOOvtlPGwPlOzAbmVrYAy2b2G9r73VoNw4dEbDr630exik9QHiis71rd2N2vaR1W4rbQ9yGLyTan2VnDWyC-b6t14mH0_z1ewlXbw9v86mi1RhgSzFBiujVFkynWHNy6KpSKGorJVuak04k5xKk0tdsKIuWU3zMjN1pXRe5iaL88vk9ugb136OJuzExo0-HhQELbGgrMqwiio8qpR3IXjTiMHHZ_1eIBGHFMQxBRFTEIcUBIsMPTIhavvW-D_n_6EfZa-Mqg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kirubakaran, J.</creator><creator>Prasanna Venkatesan, G. K. D.</creator><creator>Baskar, S.</creator><creator>Kumaresan, M.</creator><creator>Annamalai, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</title><author>Kirubakaran, J. ; Prasanna Venkatesan, G. K. D. ; Baskar, S. ; Kumaresan, M. ; Annamalai, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1613-1f19ecc883d41b786f906c2abcdfbd073a72ae5ad636b83b2584eb9cd585e4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirubakaran, J.</creatorcontrib><creatorcontrib>Prasanna Venkatesan, G. K. D.</creatorcontrib><creatorcontrib>Baskar, S.</creatorcontrib><creatorcontrib>Kumaresan, M.</creatorcontrib><creatorcontrib>Annamalai, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirubakaran, J.</au><au>Prasanna Venkatesan, G. K. D.</au><au>Baskar, S.</au><au>Kumaresan, M.</au><au>Annamalai, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>79</volume><issue>15-16</issue><spage>9901</spage><epage>9919</epage><pages>9901-9919</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper presents a novel algorithm for the liver diseases fibrosis called Cirrhosis, which is considered as the most communal diseases in healthcare research. This research work introduced a technique for discriminating the cirrhotic liver from normal liver through adaptive ultrasound (AUS) instead of ultrasound (US) images with Hybrid Coupled Dictionary Pairs on Longitudinal Domain (HCDPLD). The parameters such as region covered and data structure values or variables has been analyzed using heuristic pattern producing classifierfor identifying the sub-bands and edge features. The developed cirrhosis prediction strategy helps to improve the results of image resolution with the accuracy of 99.82%, Average Peak Signal to Noise Ratio (PSNR) of 3.22 dB and Structural Similarity Index (SSIM) of 0.89 through HCDPLD when compared with existing counterparts. Further Ingestible Internet of Things (IoT) sensors with activity tracker helps to monitor the patient health accurately in reliable data transfer.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-7259-3</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-04, Vol.79 (15-16), p.9901-9919 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2816239419 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Communication Networks Computer Science Data Structures and Information Theory Multimedia Information Systems Special Purpose and Application-Based Systems |
title | RETRACTED ARTICLE: Prediction of cirrhosis disease from radiologist liver medical image using hybrid coupled dictionary pairs on longitudinal domain approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Prediction%20of%20cirrhosis%20disease%20from%20radiologist%20liver%20medical%20image%20using%20hybrid%20coupled%20dictionary%20pairs%20on%20longitudinal%20domain%20approach&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kirubakaran,%20J.&rft.date=2020-04-01&rft.volume=79&rft.issue=15-16&rft.spage=9901&rft.epage=9919&rft.pages=9901-9919&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-7259-3&rft_dat=%3Cproquest_cross%3E2816239419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816239419&rft_id=info:pmid/&rfr_iscdi=true |