High efficiency and stability of perovskite solar cells using MD-697 doped poly (9-vinyl carbazole) modified interface of PCBM/perovskite layers
Using interface modification is an effective method to improve the crystallinity and stability of perovskite solar cells (PSCs). P-type poly(9-vinylcarbazole) (PVK) inserted the interface of perovskite and electron transport layer (ETL), which can improve the crystallinity and stability of PSCs. How...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-05, Vol.34 (14), p.1185, Article 1185 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 1185 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Zhou, Jianping Hua, Yikun Long, Biyu Huang, Sumei Chen, Xiaohong |
description | Using interface modification is an effective method to improve the crystallinity and stability of perovskite solar cells (PSCs). P-type poly(9-vinylcarbazole) (PVK) inserted the interface of perovskite and electron transport layer (ETL), which can improve the crystallinity and stability of PSCs. However, pure PVK-modified interface of perovskite/ETL is sensitive to the modified thickness and UV exposure, which can only improve limited PCE and anti-UV durability compared to the reference PSCs. The anti-oxidant (1,2-dioxoethylene)bis(iminoethylene) bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (MD-697) doped into poly (9-vinyl carbazole) (PVK) was firstly introduced to modify the interface of perovskite and phenyl-C
61
-butyric acid methyl (PCBM). MD-697:PVK-modified PSCs got the champion PCEs of 20.75% with less hysteresis effect, which is far higher than PCE (19.03%) of PVK-modified PSCs, (17.58%) MD-687-modified PSCs and (17.1%) of reference PSCs. MD-697:PVK-modified PSCs remained 89% of the original PCEs aged for 2800 h at room temperature and RH 85% under encapsulating condition and still remained 94% of the original PCE value aged for 6 h UV irradiation, which show best moisture resistance and UV durability. The joint coordination of C=O, NH and OH groups of MD-697 and carbazole groups of PVK can contribute to best crystallization of the perovskite layer, improving passivation effect and superior interface contact at perovskite/PCBM layers. The quasi-continuous two-dimension layer was formed on the surface of 3D perovskite film, which can further inhibit moisture invasion along grain boundaries. Therefore, MD-697:PVK jointly modified the perovskite film is an effective method to obtain efficient and stable PSCs. |
doi_str_mv | 10.1007/s10854-023-10618-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2816233412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816233412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2f121e3de4c02b717b074c159e56bb346088a83a7eff7aaa519647f6c9c7c1293</originalsourceid><addsrcrecordid>eNp9kE9P2zAYh61pk9Z1-wI7WeIyDqb-lzg5srJRJBAcQNrNcpzXnYuJg51WCp-Cj0xKkdhpJ1-e3_PKD0LfGT1hlKpFZrQqJKFcEEZLVhH6Ac1YoQSRFf_zEc1oXSgiC84_oy85byilpRTVDD2v_PovBue89dDZEZuuxXkwjQ9-GHF0uIcUd_neD4BzDCZhCyFkvM2-W-OrM1LWCrexhxb3MYz4R012vhsDtiY15ikGOMYPsfXOT4TvBkjOWNiLb5Y_rxb_2IMZIeWv6JMzIcO3t3eO7n7_ul2uyOX1-cXy9JJYweqBcMc4A9GCtJQ3iqmGKmlZUUNRNo2QJa0qUwmjpq8pY0zB6lIqV9raKst4Lebo6ODtU3zcQh70Jm5TN53UvGIlF0IyPlH8QNkUc07gdJ_8g0mjZlTvy-tDeT2V16_lNZ1G4jDKE9ytIb2r_7N6ASE_hyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816233412</pqid></control><display><type>article</type><title>High efficiency and stability of perovskite solar cells using MD-697 doped poly (9-vinyl carbazole) modified interface of PCBM/perovskite layers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Jianping ; Hua, Yikun ; Long, Biyu ; Huang, Sumei ; Chen, Xiaohong</creator><creatorcontrib>Zhou, Jianping ; Hua, Yikun ; Long, Biyu ; Huang, Sumei ; Chen, Xiaohong</creatorcontrib><description>Using interface modification is an effective method to improve the crystallinity and stability of perovskite solar cells (PSCs). P-type poly(9-vinylcarbazole) (PVK) inserted the interface of perovskite and electron transport layer (ETL), which can improve the crystallinity and stability of PSCs. However, pure PVK-modified interface of perovskite/ETL is sensitive to the modified thickness and UV exposure, which can only improve limited PCE and anti-UV durability compared to the reference PSCs. The anti-oxidant (1,2-dioxoethylene)bis(iminoethylene) bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (MD-697) doped into poly (9-vinyl carbazole) (PVK) was firstly introduced to modify the interface of perovskite and phenyl-C
61
-butyric acid methyl (PCBM). MD-697:PVK-modified PSCs got the champion PCEs of 20.75% with less hysteresis effect, which is far higher than PCE (19.03%) of PVK-modified PSCs, (17.58%) MD-687-modified PSCs and (17.1%) of reference PSCs. MD-697:PVK-modified PSCs remained 89% of the original PCEs aged for 2800 h at room temperature and RH 85% under encapsulating condition and still remained 94% of the original PCE value aged for 6 h UV irradiation, which show best moisture resistance and UV durability. The joint coordination of C=O, NH and OH groups of MD-697 and carbazole groups of PVK can contribute to best crystallization of the perovskite layer, improving passivation effect and superior interface contact at perovskite/PCBM layers. The quasi-continuous two-dimension layer was formed on the surface of 3D perovskite film, which can further inhibit moisture invasion along grain boundaries. Therefore, MD-697:PVK jointly modified the perovskite film is an effective method to obtain efficient and stable PSCs.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10618-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Butyric acid ; Carbazoles ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallinity ; Crystallization ; Durability ; Efficiency ; Electron transport ; Grain boundaries ; Interface stability ; Interfaces ; Materials Science ; Moisture effects ; Moisture resistance ; Optical and Electronic Materials ; Oxidizing agents ; Perovskites ; Photovoltaic cells ; Polyvinyl carbazole ; Room temperature ; Solar cells ; Solvents ; Spectrum analysis ; Ultraviolet radiation</subject><ispartof>Journal of materials science. Materials in electronics, 2023-05, Vol.34 (14), p.1185, Article 1185</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2f121e3de4c02b717b074c159e56bb346088a83a7eff7aaa519647f6c9c7c1293</citedby><cites>FETCH-LOGICAL-c319t-2f121e3de4c02b717b074c159e56bb346088a83a7eff7aaa519647f6c9c7c1293</cites><orcidid>0000-0003-0018-0198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10618-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10618-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Jianping</creatorcontrib><creatorcontrib>Hua, Yikun</creatorcontrib><creatorcontrib>Long, Biyu</creatorcontrib><creatorcontrib>Huang, Sumei</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><title>High efficiency and stability of perovskite solar cells using MD-697 doped poly (9-vinyl carbazole) modified interface of PCBM/perovskite layers</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Using interface modification is an effective method to improve the crystallinity and stability of perovskite solar cells (PSCs). P-type poly(9-vinylcarbazole) (PVK) inserted the interface of perovskite and electron transport layer (ETL), which can improve the crystallinity and stability of PSCs. However, pure PVK-modified interface of perovskite/ETL is sensitive to the modified thickness and UV exposure, which can only improve limited PCE and anti-UV durability compared to the reference PSCs. The anti-oxidant (1,2-dioxoethylene)bis(iminoethylene) bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (MD-697) doped into poly (9-vinyl carbazole) (PVK) was firstly introduced to modify the interface of perovskite and phenyl-C
61
-butyric acid methyl (PCBM). MD-697:PVK-modified PSCs got the champion PCEs of 20.75% with less hysteresis effect, which is far higher than PCE (19.03%) of PVK-modified PSCs, (17.58%) MD-687-modified PSCs and (17.1%) of reference PSCs. MD-697:PVK-modified PSCs remained 89% of the original PCEs aged for 2800 h at room temperature and RH 85% under encapsulating condition and still remained 94% of the original PCE value aged for 6 h UV irradiation, which show best moisture resistance and UV durability. The joint coordination of C=O, NH and OH groups of MD-697 and carbazole groups of PVK can contribute to best crystallization of the perovskite layer, improving passivation effect and superior interface contact at perovskite/PCBM layers. The quasi-continuous two-dimension layer was formed on the surface of 3D perovskite film, which can further inhibit moisture invasion along grain boundaries. Therefore, MD-697:PVK jointly modified the perovskite film is an effective method to obtain efficient and stable PSCs.</description><subject>Acids</subject><subject>Butyric acid</subject><subject>Carbazoles</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Durability</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Grain boundaries</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Moisture effects</subject><subject>Moisture resistance</subject><subject>Optical and Electronic Materials</subject><subject>Oxidizing agents</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polyvinyl carbazole</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Ultraviolet radiation</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9P2zAYh61pk9Z1-wI7WeIyDqb-lzg5srJRJBAcQNrNcpzXnYuJg51WCp-Cj0xKkdhpJ1-e3_PKD0LfGT1hlKpFZrQqJKFcEEZLVhH6Ac1YoQSRFf_zEc1oXSgiC84_oy85byilpRTVDD2v_PovBue89dDZEZuuxXkwjQ9-GHF0uIcUd_neD4BzDCZhCyFkvM2-W-OrM1LWCrexhxb3MYz4R012vhsDtiY15ikGOMYPsfXOT4TvBkjOWNiLb5Y_rxb_2IMZIeWv6JMzIcO3t3eO7n7_ul2uyOX1-cXy9JJYweqBcMc4A9GCtJQ3iqmGKmlZUUNRNo2QJa0qUwmjpq8pY0zB6lIqV9raKst4Lebo6ODtU3zcQh70Jm5TN53UvGIlF0IyPlH8QNkUc07gdJ_8g0mjZlTvy-tDeT2V16_lNZ1G4jDKE9ytIb2r_7N6ASE_hyw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhou, Jianping</creator><creator>Hua, Yikun</creator><creator>Long, Biyu</creator><creator>Huang, Sumei</creator><creator>Chen, Xiaohong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0018-0198</orcidid></search><sort><creationdate>20230501</creationdate><title>High efficiency and stability of perovskite solar cells using MD-697 doped poly (9-vinyl carbazole) modified interface of PCBM/perovskite layers</title><author>Zhou, Jianping ; Hua, Yikun ; Long, Biyu ; Huang, Sumei ; Chen, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2f121e3de4c02b717b074c159e56bb346088a83a7eff7aaa519647f6c9c7c1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Butyric acid</topic><topic>Carbazoles</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Durability</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Grain boundaries</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Moisture effects</topic><topic>Moisture resistance</topic><topic>Optical and Electronic Materials</topic><topic>Oxidizing agents</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polyvinyl carbazole</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianping</creatorcontrib><creatorcontrib>Hua, Yikun</creatorcontrib><creatorcontrib>Long, Biyu</creatorcontrib><creatorcontrib>Huang, Sumei</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianping</au><au>Hua, Yikun</au><au>Long, Biyu</au><au>Huang, Sumei</au><au>Chen, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High efficiency and stability of perovskite solar cells using MD-697 doped poly (9-vinyl carbazole) modified interface of PCBM/perovskite layers</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>34</volume><issue>14</issue><spage>1185</spage><pages>1185-</pages><artnum>1185</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Using interface modification is an effective method to improve the crystallinity and stability of perovskite solar cells (PSCs). P-type poly(9-vinylcarbazole) (PVK) inserted the interface of perovskite and electron transport layer (ETL), which can improve the crystallinity and stability of PSCs. However, pure PVK-modified interface of perovskite/ETL is sensitive to the modified thickness and UV exposure, which can only improve limited PCE and anti-UV durability compared to the reference PSCs. The anti-oxidant (1,2-dioxoethylene)bis(iminoethylene) bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (MD-697) doped into poly (9-vinyl carbazole) (PVK) was firstly introduced to modify the interface of perovskite and phenyl-C
61
-butyric acid methyl (PCBM). MD-697:PVK-modified PSCs got the champion PCEs of 20.75% with less hysteresis effect, which is far higher than PCE (19.03%) of PVK-modified PSCs, (17.58%) MD-687-modified PSCs and (17.1%) of reference PSCs. MD-697:PVK-modified PSCs remained 89% of the original PCEs aged for 2800 h at room temperature and RH 85% under encapsulating condition and still remained 94% of the original PCE value aged for 6 h UV irradiation, which show best moisture resistance and UV durability. The joint coordination of C=O, NH and OH groups of MD-697 and carbazole groups of PVK can contribute to best crystallization of the perovskite layer, improving passivation effect and superior interface contact at perovskite/PCBM layers. The quasi-continuous two-dimension layer was formed on the surface of 3D perovskite film, which can further inhibit moisture invasion along grain boundaries. Therefore, MD-697:PVK jointly modified the perovskite film is an effective method to obtain efficient and stable PSCs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10618-0</doi><orcidid>https://orcid.org/0000-0003-0018-0198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-05, Vol.34 (14), p.1185, Article 1185 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2816233412 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acids Butyric acid Carbazoles Characterization and Evaluation of Materials Chemistry and Materials Science Crystallinity Crystallization Durability Efficiency Electron transport Grain boundaries Interface stability Interfaces Materials Science Moisture effects Moisture resistance Optical and Electronic Materials Oxidizing agents Perovskites Photovoltaic cells Polyvinyl carbazole Room temperature Solar cells Solvents Spectrum analysis Ultraviolet radiation |
title | High efficiency and stability of perovskite solar cells using MD-697 doped poly (9-vinyl carbazole) modified interface of PCBM/perovskite layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20efficiency%20and%20stability%20of%20perovskite%20solar%20cells%20using%20MD-697%20doped%20poly%20(9-vinyl%20carbazole)%20modified%20interface%20of%20PCBM/perovskite%20layers&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhou,%20Jianping&rft.date=2023-05-01&rft.volume=34&rft.issue=14&rft.spage=1185&rft.pages=1185-&rft.artnum=1185&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10618-0&rft_dat=%3Cproquest_cross%3E2816233412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816233412&rft_id=info:pmid/&rfr_iscdi=true |