Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace

Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium and barium obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co 2 O 3 + SrCO 3 or barium Co 2 O 3 + BaCO 3 in a stream of high (150 W/cm 2 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal engineering 2023-05, Vol.70 (5), p.384-387
Hauptverfasser: Paizullahanov, M. S., Parpiev, O. R., Salomov, U. R., Shermatov, Zh. Z., Karimova, G. Sh, Sabirov, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 5
container_start_page 384
container_title Thermal engineering
container_volume 70
creator Paizullahanov, M. S.
Parpiev, O. R.
Salomov, U. R.
Shermatov, Zh. Z.
Karimova, G. Sh
Sabirov, S. S.
description Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium and barium obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co 2 O 3 + SrCO 3 or barium Co 2 O 3 + BaCO 3 in a stream of high (150 W/cm 2 ) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10 –6 K –1 ) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co 3+ = Co 2+ + Co 4+ . This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.
doi_str_mv 10.1134/S004060152305004X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2816035418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816035418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-bc647a9ccfaf51e783a6023128ff9b62ab20647066b57809520737e2f99825273</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Br1bzp0nboy6uK6wIVsFbSbuTtUu3WZOUpd793qZU8CCeZh7ze2-GQeickitKeXydExITSahgnIjQvx2gCRVCRJITeogmwzga5sfoxLlNkHFMxQR9PUMLe1U2gO9asOse56azFbhLvOhX1uzMHix-VB5srRqHtbF43kGDZ9AEeascrLBpQ2PrbotVu8K5t6b1g5qZUjW-9uBw3rf-HXz9OeIqrGnUEGVbVcEpOtIhHc5-6hS9zu9eZoto-XT_MLtZRhWTqY_KSsaJyqpKKy0oJClXkjBOWap1VkqmSkYCQaQsRZKSTDCS8ASYzrKUCZbwKboYc3fWfHTgfLExwwWNK1hKJeEipmmg6EhV1jhnQRc7W2-V7QtKiuHbxZ9vBw8bPS6w7Rrsb_L_pm_nbYD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816035418</pqid></control><display><type>article</type><title>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</title><source>SpringerNature Journals</source><creator>Paizullahanov, M. S. ; Parpiev, O. R. ; Salomov, U. R. ; Shermatov, Zh. Z. ; Karimova, G. Sh ; Sabirov, S. S.</creator><creatorcontrib>Paizullahanov, M. S. ; Parpiev, O. R. ; Salomov, U. R. ; Shermatov, Zh. Z. ; Karimova, G. Sh ; Sabirov, S. S.</creatorcontrib><description>Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium and barium obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co 2 O 3 + SrCO 3 or barium Co 2 O 3 + BaCO 3 in a stream of high (150 W/cm 2 ) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10 –6 K –1 ) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co 3+ = Co 2+ + Co 4+ . This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.</description><identifier>ISSN: 0040-6015</identifier><identifier>EISSN: 1555-6301</identifier><identifier>DOI: 10.1134/S004060152305004X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Barium ; Carbonates ; Cobalt ; Cobalt oxides ; Electrical resistivity ; Electrode materials ; Electronic structure ; Engineering ; Engineering Thermodynamics ; Fuel cells ; Heat and Mass Transfer ; Hydrogen storage ; Oxygen ; Perovskites ; Renewable energy sources ; Renewable Energy Sources and Hydropower ; Solar furnaces ; Solar radiation ; Solid oxide fuel cells ; Strontium ; Strontium carbonate ; Strontium oxides ; Thermal expansion</subject><ispartof>Thermal engineering, 2023-05, Vol.70 (5), p.384-387</ispartof><rights>Pleiades Publishing, Inc. 2023. ISSN 0040-6015, Thermal Engineering, 2023, Vol. 70, No. 5, pp. 384–387. © Pleiades Publishing, Inc., 2023. Russian Text © The Author(s), 2023, published in Teploenergetika.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-bc647a9ccfaf51e783a6023128ff9b62ab20647066b57809520737e2f99825273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S004060152305004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S004060152305004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Paizullahanov, M. S.</creatorcontrib><creatorcontrib>Parpiev, O. R.</creatorcontrib><creatorcontrib>Salomov, U. R.</creatorcontrib><creatorcontrib>Shermatov, Zh. Z.</creatorcontrib><creatorcontrib>Karimova, G. Sh</creatorcontrib><creatorcontrib>Sabirov, S. S.</creatorcontrib><title>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</title><title>Thermal engineering</title><addtitle>Therm. Eng</addtitle><description>Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium and barium obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co 2 O 3 + SrCO 3 or barium Co 2 O 3 + BaCO 3 in a stream of high (150 W/cm 2 ) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10 –6 K –1 ) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co 3+ = Co 2+ + Co 4+ . This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.</description><subject>Barium</subject><subject>Carbonates</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electronic structure</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fuel cells</subject><subject>Heat and Mass Transfer</subject><subject>Hydrogen storage</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Renewable energy sources</subject><subject>Renewable Energy Sources and Hydropower</subject><subject>Solar furnaces</subject><subject>Solar radiation</subject><subject>Solid oxide fuel cells</subject><subject>Strontium</subject><subject>Strontium carbonate</subject><subject>Strontium oxides</subject><subject>Thermal expansion</subject><issn>0040-6015</issn><issn>1555-6301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Br1bzp0nboy6uK6wIVsFbSbuTtUu3WZOUpd793qZU8CCeZh7ze2-GQeickitKeXydExITSahgnIjQvx2gCRVCRJITeogmwzga5sfoxLlNkHFMxQR9PUMLe1U2gO9asOse56azFbhLvOhX1uzMHix-VB5srRqHtbF43kGDZ9AEeascrLBpQ2PrbotVu8K5t6b1g5qZUjW-9uBw3rf-HXz9OeIqrGnUEGVbVcEpOtIhHc5-6hS9zu9eZoto-XT_MLtZRhWTqY_KSsaJyqpKKy0oJClXkjBOWap1VkqmSkYCQaQsRZKSTDCS8ASYzrKUCZbwKboYc3fWfHTgfLExwwWNK1hKJeEipmmg6EhV1jhnQRc7W2-V7QtKiuHbxZ9vBw8bPS6w7Rrsb_L_pm_nbYD-</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Paizullahanov, M. S.</creator><creator>Parpiev, O. R.</creator><creator>Salomov, U. R.</creator><creator>Shermatov, Zh. Z.</creator><creator>Karimova, G. Sh</creator><creator>Sabirov, S. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</title><author>Paizullahanov, M. S. ; Parpiev, O. R. ; Salomov, U. R. ; Shermatov, Zh. Z. ; Karimova, G. Sh ; Sabirov, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-bc647a9ccfaf51e783a6023128ff9b62ab20647066b57809520737e2f99825273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium</topic><topic>Carbonates</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electronic structure</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fuel cells</topic><topic>Heat and Mass Transfer</topic><topic>Hydrogen storage</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Renewable energy sources</topic><topic>Renewable Energy Sources and Hydropower</topic><topic>Solar furnaces</topic><topic>Solar radiation</topic><topic>Solid oxide fuel cells</topic><topic>Strontium</topic><topic>Strontium carbonate</topic><topic>Strontium oxides</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paizullahanov, M. S.</creatorcontrib><creatorcontrib>Parpiev, O. R.</creatorcontrib><creatorcontrib>Salomov, U. R.</creatorcontrib><creatorcontrib>Shermatov, Zh. Z.</creatorcontrib><creatorcontrib>Karimova, G. Sh</creatorcontrib><creatorcontrib>Sabirov, S. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paizullahanov, M. S.</au><au>Parpiev, O. R.</au><au>Salomov, U. R.</au><au>Shermatov, Zh. Z.</au><au>Karimova, G. Sh</au><au>Sabirov, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</atitle><jtitle>Thermal engineering</jtitle><stitle>Therm. Eng</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>384</spage><epage>387</epage><pages>384-387</pages><issn>0040-6015</issn><eissn>1555-6301</eissn><abstract>Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium and barium obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co 2 O 3 + SrCO 3 or barium Co 2 O 3 + BaCO 3 in a stream of high (150 W/cm 2 ) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10 –6 K –1 ) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co 3+ = Co 2+ + Co 4+ . This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S004060152305004X</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6015
ispartof Thermal engineering, 2023-05, Vol.70 (5), p.384-387
issn 0040-6015
1555-6301
language eng
recordid cdi_proquest_journals_2816035418
source SpringerNature Journals
subjects Barium
Carbonates
Cobalt
Cobalt oxides
Electrical resistivity
Electrode materials
Electronic structure
Engineering
Engineering Thermodynamics
Fuel cells
Heat and Mass Transfer
Hydrogen storage
Oxygen
Perovskites
Renewable energy sources
Renewable Energy Sources and Hydropower
Solar furnaces
Solar radiation
Solid oxide fuel cells
Strontium
Strontium carbonate
Strontium oxides
Thermal expansion
title Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewable%20Energy%20Sources,%20Hydropower%20Materials%20for%20Fuel%20Cells%20Based%20on%20Barium%20and%20Strontium%20Cobaltites%20Synthetized%20on%20a%20Solar%20Furnace&rft.jtitle=Thermal%20engineering&rft.au=Paizullahanov,%20M.%20S.&rft.date=2023-05-01&rft.volume=70&rft.issue=5&rft.spage=384&rft.epage=387&rft.pages=384-387&rft.issn=0040-6015&rft.eissn=1555-6301&rft_id=info:doi/10.1134/S004060152305004X&rft_dat=%3Cproquest_cross%3E2816035418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816035418&rft_id=info:pmid/&rfr_iscdi=true