Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace
Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium and barium obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co 2 O 3 + SrCO 3 or barium Co 2 O 3 + BaCO 3 in a stream of high (150 W/cm 2 )...
Gespeichert in:
Veröffentlicht in: | Thermal engineering 2023-05, Vol.70 (5), p.384-387 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 5 |
container_start_page | 384 |
container_title | Thermal engineering |
container_volume | 70 |
creator | Paizullahanov, M. S. Parpiev, O. R. Salomov, U. R. Shermatov, Zh. Z. Karimova, G. Sh Sabirov, S. S. |
description | Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium
and barium
obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co
2
O
3
+ SrCO
3
or barium Co
2
O
3
+ BaCO
3
in a stream of high (150 W/cm
2
) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10
–6
K
–1
) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co
3+
= Co
2+
+ Co
4+
. This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage. |
doi_str_mv | 10.1134/S004060152305004X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2816035418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2816035418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-bc647a9ccfaf51e783a6023128ff9b62ab20647066b57809520737e2f99825273</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Br1bzp0nboy6uK6wIVsFbSbuTtUu3WZOUpd793qZU8CCeZh7ze2-GQeickitKeXydExITSahgnIjQvx2gCRVCRJITeogmwzga5sfoxLlNkHFMxQR9PUMLe1U2gO9asOse56azFbhLvOhX1uzMHix-VB5srRqHtbF43kGDZ9AEeascrLBpQ2PrbotVu8K5t6b1g5qZUjW-9uBw3rf-HXz9OeIqrGnUEGVbVcEpOtIhHc5-6hS9zu9eZoto-XT_MLtZRhWTqY_KSsaJyqpKKy0oJClXkjBOWap1VkqmSkYCQaQsRZKSTDCS8ASYzrKUCZbwKboYc3fWfHTgfLExwwWNK1hKJeEipmmg6EhV1jhnQRc7W2-V7QtKiuHbxZ9vBw8bPS6w7Rrsb_L_pm_nbYD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816035418</pqid></control><display><type>article</type><title>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</title><source>SpringerNature Journals</source><creator>Paizullahanov, M. S. ; Parpiev, O. R. ; Salomov, U. R. ; Shermatov, Zh. Z. ; Karimova, G. Sh ; Sabirov, S. S.</creator><creatorcontrib>Paizullahanov, M. S. ; Parpiev, O. R. ; Salomov, U. R. ; Shermatov, Zh. Z. ; Karimova, G. Sh ; Sabirov, S. S.</creatorcontrib><description>Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium
and barium
obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co
2
O
3
+ SrCO
3
or barium Co
2
O
3
+ BaCO
3
in a stream of high (150 W/cm
2
) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10
–6
K
–1
) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co
3+
= Co
2+
+ Co
4+
. This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.</description><identifier>ISSN: 0040-6015</identifier><identifier>EISSN: 1555-6301</identifier><identifier>DOI: 10.1134/S004060152305004X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Barium ; Carbonates ; Cobalt ; Cobalt oxides ; Electrical resistivity ; Electrode materials ; Electronic structure ; Engineering ; Engineering Thermodynamics ; Fuel cells ; Heat and Mass Transfer ; Hydrogen storage ; Oxygen ; Perovskites ; Renewable energy sources ; Renewable Energy Sources and Hydropower ; Solar furnaces ; Solar radiation ; Solid oxide fuel cells ; Strontium ; Strontium carbonate ; Strontium oxides ; Thermal expansion</subject><ispartof>Thermal engineering, 2023-05, Vol.70 (5), p.384-387</ispartof><rights>Pleiades Publishing, Inc. 2023. ISSN 0040-6015, Thermal Engineering, 2023, Vol. 70, No. 5, pp. 384–387. © Pleiades Publishing, Inc., 2023. Russian Text © The Author(s), 2023, published in Teploenergetika.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-bc647a9ccfaf51e783a6023128ff9b62ab20647066b57809520737e2f99825273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S004060152305004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S004060152305004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Paizullahanov, M. S.</creatorcontrib><creatorcontrib>Parpiev, O. R.</creatorcontrib><creatorcontrib>Salomov, U. R.</creatorcontrib><creatorcontrib>Shermatov, Zh. Z.</creatorcontrib><creatorcontrib>Karimova, G. Sh</creatorcontrib><creatorcontrib>Sabirov, S. S.</creatorcontrib><title>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</title><title>Thermal engineering</title><addtitle>Therm. Eng</addtitle><description>Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium
and barium
obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co
2
O
3
+ SrCO
3
or barium Co
2
O
3
+ BaCO
3
in a stream of high (150 W/cm
2
) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10
–6
K
–1
) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co
3+
= Co
2+
+ Co
4+
. This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.</description><subject>Barium</subject><subject>Carbonates</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electronic structure</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fuel cells</subject><subject>Heat and Mass Transfer</subject><subject>Hydrogen storage</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Renewable energy sources</subject><subject>Renewable Energy Sources and Hydropower</subject><subject>Solar furnaces</subject><subject>Solar radiation</subject><subject>Solid oxide fuel cells</subject><subject>Strontium</subject><subject>Strontium carbonate</subject><subject>Strontium oxides</subject><subject>Thermal expansion</subject><issn>0040-6015</issn><issn>1555-6301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Br1bzp0nboy6uK6wIVsFbSbuTtUu3WZOUpd793qZU8CCeZh7ze2-GQeickitKeXydExITSahgnIjQvx2gCRVCRJITeogmwzga5sfoxLlNkHFMxQR9PUMLe1U2gO9asOse56azFbhLvOhX1uzMHix-VB5srRqHtbF43kGDZ9AEeascrLBpQ2PrbotVu8K5t6b1g5qZUjW-9uBw3rf-HXz9OeIqrGnUEGVbVcEpOtIhHc5-6hS9zu9eZoto-XT_MLtZRhWTqY_KSsaJyqpKKy0oJClXkjBOWap1VkqmSkYCQaQsRZKSTDCS8ASYzrKUCZbwKboYc3fWfHTgfLExwwWNK1hKJeEipmmg6EhV1jhnQRc7W2-V7QtKiuHbxZ9vBw8bPS6w7Rrsb_L_pm_nbYD-</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Paizullahanov, M. S.</creator><creator>Parpiev, O. R.</creator><creator>Salomov, U. R.</creator><creator>Shermatov, Zh. Z.</creator><creator>Karimova, G. Sh</creator><creator>Sabirov, S. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</title><author>Paizullahanov, M. S. ; Parpiev, O. R. ; Salomov, U. R. ; Shermatov, Zh. Z. ; Karimova, G. Sh ; Sabirov, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-bc647a9ccfaf51e783a6023128ff9b62ab20647066b57809520737e2f99825273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium</topic><topic>Carbonates</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electronic structure</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fuel cells</topic><topic>Heat and Mass Transfer</topic><topic>Hydrogen storage</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Renewable energy sources</topic><topic>Renewable Energy Sources and Hydropower</topic><topic>Solar furnaces</topic><topic>Solar radiation</topic><topic>Solid oxide fuel cells</topic><topic>Strontium</topic><topic>Strontium carbonate</topic><topic>Strontium oxides</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paizullahanov, M. S.</creatorcontrib><creatorcontrib>Parpiev, O. R.</creatorcontrib><creatorcontrib>Salomov, U. R.</creatorcontrib><creatorcontrib>Shermatov, Zh. Z.</creatorcontrib><creatorcontrib>Karimova, G. Sh</creatorcontrib><creatorcontrib>Sabirov, S. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paizullahanov, M. S.</au><au>Parpiev, O. R.</au><au>Salomov, U. R.</au><au>Shermatov, Zh. Z.</au><au>Karimova, G. Sh</au><au>Sabirov, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace</atitle><jtitle>Thermal engineering</jtitle><stitle>Therm. Eng</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>384</spage><epage>387</epage><pages>384-387</pages><issn>0040-6015</issn><eissn>1555-6301</eissn><abstract>Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium
and barium
obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co
2
O
3
+ SrCO
3
or barium Co
2
O
3
+ BaCO
3
in a stream of high (150 W/cm
2
) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 μm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10
–6
K
–1
) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co
3+
= Co
2+
+ Co
4+
. This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S004060152305004X</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6015 |
ispartof | Thermal engineering, 2023-05, Vol.70 (5), p.384-387 |
issn | 0040-6015 1555-6301 |
language | eng |
recordid | cdi_proquest_journals_2816035418 |
source | SpringerNature Journals |
subjects | Barium Carbonates Cobalt Cobalt oxides Electrical resistivity Electrode materials Electronic structure Engineering Engineering Thermodynamics Fuel cells Heat and Mass Transfer Hydrogen storage Oxygen Perovskites Renewable energy sources Renewable Energy Sources and Hydropower Solar furnaces Solar radiation Solid oxide fuel cells Strontium Strontium carbonate Strontium oxides Thermal expansion |
title | Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewable%20Energy%20Sources,%20Hydropower%20Materials%20for%20Fuel%20Cells%20Based%20on%20Barium%20and%20Strontium%20Cobaltites%20Synthetized%20on%20a%20Solar%20Furnace&rft.jtitle=Thermal%20engineering&rft.au=Paizullahanov,%20M.%20S.&rft.date=2023-05-01&rft.volume=70&rft.issue=5&rft.spage=384&rft.epage=387&rft.pages=384-387&rft.issn=0040-6015&rft.eissn=1555-6301&rft_id=info:doi/10.1134/S004060152305004X&rft_dat=%3Cproquest_cross%3E2816035418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816035418&rft_id=info:pmid/&rfr_iscdi=true |