Copper Isotope Composition of Pt–Fe Minerals from the Nizhny Tagil Massif, Middle Urals: First Results

In order to provide further insights into the origin of Pt–Fe minerals, this study presents the first copper isotope data for Pt–Fe minerals from the Nizhny Tagil massif, an international standard of the zoned Ural-type complexes. The chemical and isotopic composition of Pt–Fe minerals were determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady earth sciences 2023-06, Vol.509 (2), p.196-202
Hauptverfasser: Malitch, K. N., Soloshenko, N. G., Votyakov, S. L., Badanina, I. Yu, Okuneva, T. G., Sidoruk, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 196
container_title Doklady earth sciences
container_volume 509
creator Malitch, K. N.
Soloshenko, N. G.
Votyakov, S. L.
Badanina, I. Yu
Okuneva, T. G.
Sidoruk, A. R.
description In order to provide further insights into the origin of Pt–Fe minerals, this study presents the first copper isotope data for Pt–Fe minerals from the Nizhny Tagil massif, an international standard of the zoned Ural-type complexes. The chemical and isotopic composition of Pt–Fe minerals were determined by electron microprobe analysis, chemical sample preparation with selective chromatographic separation of copper from a solution of the studied sample, followed by high-precision determination of the δ 65 Cu value using multiple-collector inductively coupled plasma mass-spectrometry. The majority of platinum group minerals (PGM) from chromitites of the Alexandrovsk Log and Krutoy Log deposits within the Nizhny Tagil massif are formed by Pt–Fe minerals, among which high-temperature ferroan platinum (Pt 2 Fe) containing subordinate inclusions of Os–Ir alloys and laurite (RuS 2 ) predominate over other PGM. The concentrations of copper and δ 65 Cu values in the studied samples of ferroan platinum vary from 0.4 to 1.4 wt % Cu and from –0.37 to 0.26‰, respectively. Secondary low-temperature PGM assemblage is represented by the tetraferroplatinum (PtFe)—tulameenite (PtFe 0.5 Cu 0.5 ) solid solutions series. The concentrations of copper in these PGM vary in the range of 6.8–11.3 wt %; the values of δ 65 Cu are characterized by lighter Cu-isotopic compositions ranging from –1.15 to –0.72‰. The lighter Cu-isotopic composition in secondary Cu-bearing PGM compared to that in ferroan platinum (δ 65 Cu = –1.01 ± 0.17‰, n = 8 and δ 65 Cu = 0.03 ± 0.23‰, n = 7, respectively) is consistent with a secondary nature of isotopic variations, due to evolved composition of the ore-forming fluid during the low-temperature formation of the tetraferroplatinum—tulameenite solid solution series.
doi_str_mv 10.1134/S1028334X22602152
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2816034904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A802768747</galeid><sourcerecordid>A802768747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-9004ad729605119cce77dbf301537acc54b118dc693d09eea1c118aeb198c4d23</originalsourceid><addsrcrecordid>eNp1kc1KAzEQgBdRsFYfwFvAq1vztz_xJsVqoVXRFrwtaXa2TdndrEl6qCffwTf0SUyp4EEkhyQz3zeZMFF0TvCAEMavXgimOWP8ldIUU5LQg6hHEkbinCX8MJxDOt7lj6MT59YYc84T0YtWQ9N1YNHYGW86QEPTdMZpr02LTIWe_NfH5wjQVLdgZe1QZU2D_ArQg35ftVs0k0tdo6l0TleXASvLGtB8h16jkbbOo2dwm9q70-ioClE4-9n70Xx0Oxvex5PHu_HwZhIrJnIfi9CZLDMqUpwQIpSCLCsXFcPhM5lUKuELQvJSpYKVWABIosJdwoKIXPGSsn50sa_bWfO2AeeLtdnYNjxZ0JykmHGBeaAGe2opayh0WxlvpQqrhEYr00KlQ_wmxzRL84xnQSB7QVnjnIWq6KxupN0WBBe7CRR_JhAcundcYNsl2N9W_pe-ARpnh_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816034904</pqid></control><display><type>article</type><title>Copper Isotope Composition of Pt–Fe Minerals from the Nizhny Tagil Massif, Middle Urals: First Results</title><source>SpringerLink Journals</source><creator>Malitch, K. N. ; Soloshenko, N. G. ; Votyakov, S. L. ; Badanina, I. Yu ; Okuneva, T. G. ; Sidoruk, A. R.</creator><creatorcontrib>Malitch, K. N. ; Soloshenko, N. G. ; Votyakov, S. L. ; Badanina, I. Yu ; Okuneva, T. G. ; Sidoruk, A. R.</creatorcontrib><description>In order to provide further insights into the origin of Pt–Fe minerals, this study presents the first copper isotope data for Pt–Fe minerals from the Nizhny Tagil massif, an international standard of the zoned Ural-type complexes. The chemical and isotopic composition of Pt–Fe minerals were determined by electron microprobe analysis, chemical sample preparation with selective chromatographic separation of copper from a solution of the studied sample, followed by high-precision determination of the δ 65 Cu value using multiple-collector inductively coupled plasma mass-spectrometry. The majority of platinum group minerals (PGM) from chromitites of the Alexandrovsk Log and Krutoy Log deposits within the Nizhny Tagil massif are formed by Pt–Fe minerals, among which high-temperature ferroan platinum (Pt 2 Fe) containing subordinate inclusions of Os–Ir alloys and laurite (RuS 2 ) predominate over other PGM. The concentrations of copper and δ 65 Cu values in the studied samples of ferroan platinum vary from 0.4 to 1.4 wt % Cu and from –0.37 to 0.26‰, respectively. Secondary low-temperature PGM assemblage is represented by the tetraferroplatinum (PtFe)—tulameenite (PtFe 0.5 Cu 0.5 ) solid solutions series. The concentrations of copper in these PGM vary in the range of 6.8–11.3 wt %; the values of δ 65 Cu are characterized by lighter Cu-isotopic compositions ranging from –1.15 to –0.72‰. The lighter Cu-isotopic composition in secondary Cu-bearing PGM compared to that in ferroan platinum (δ 65 Cu = –1.01 ± 0.17‰, n = 8 and δ 65 Cu = 0.03 ± 0.23‰, n = 7, respectively) is consistent with a secondary nature of isotopic variations, due to evolved composition of the ore-forming fluid during the low-temperature formation of the tetraferroplatinum—tulameenite solid solution series.</description><identifier>ISSN: 1028-334X</identifier><identifier>EISSN: 1531-8354</identifier><identifier>DOI: 10.1134/S1028334X22602152</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemical composition ; Copper ; Earth and Environmental Science ; Earth Sciences ; Electron microprobe ; Electron probe microanalysis ; Electron probes ; Geochemistry ; High temperature ; Inclusions ; Inductively coupled plasma mass spectrometry ; International standards ; Iridium base alloys ; Iron ; Isotope composition ; Isotopes ; Low temperature ; Massifs ; Minerals ; Platinum ; Sample preparation ; Solid solutions ; Spectrometry</subject><ispartof>Doklady earth sciences, 2023-06, Vol.509 (2), p.196-202</ispartof><rights>The Author(s) 2023. ISSN 1028-334X, Doklady Earth Sciences, 2023, Vol. 509, Part 2, pp. 196–202. © The Author(s), 2023. This article is an open access publication, corrected publication 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Nauki o Zemle, 2023, Vol. 509, No. 2, pp. 190–197.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. ISSN 1028-334X, Doklady Earth Sciences, 2023, Vol. 509, Part 2, pp. 196–202. © The Author(s), 2023. This article is an open access publication, corrected publication 2023. Russian Text © The Author(s), 2023, published in Doklady Rossiiskoi Akademii Nauk. Nauki o Zemle, 2023, Vol. 509, No. 2, pp. 190–197. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-9004ad729605119cce77dbf301537acc54b118dc693d09eea1c118aeb198c4d23</citedby><cites>FETCH-LOGICAL-c398t-9004ad729605119cce77dbf301537acc54b118dc693d09eea1c118aeb198c4d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028334X22602152$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028334X22602152$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Malitch, K. N.</creatorcontrib><creatorcontrib>Soloshenko, N. G.</creatorcontrib><creatorcontrib>Votyakov, S. L.</creatorcontrib><creatorcontrib>Badanina, I. Yu</creatorcontrib><creatorcontrib>Okuneva, T. G.</creatorcontrib><creatorcontrib>Sidoruk, A. R.</creatorcontrib><title>Copper Isotope Composition of Pt–Fe Minerals from the Nizhny Tagil Massif, Middle Urals: First Results</title><title>Doklady earth sciences</title><addtitle>Dokl. Earth Sc</addtitle><description>In order to provide further insights into the origin of Pt–Fe minerals, this study presents the first copper isotope data for Pt–Fe minerals from the Nizhny Tagil massif, an international standard of the zoned Ural-type complexes. The chemical and isotopic composition of Pt–Fe minerals were determined by electron microprobe analysis, chemical sample preparation with selective chromatographic separation of copper from a solution of the studied sample, followed by high-precision determination of the δ 65 Cu value using multiple-collector inductively coupled plasma mass-spectrometry. The majority of platinum group minerals (PGM) from chromitites of the Alexandrovsk Log and Krutoy Log deposits within the Nizhny Tagil massif are formed by Pt–Fe minerals, among which high-temperature ferroan platinum (Pt 2 Fe) containing subordinate inclusions of Os–Ir alloys and laurite (RuS 2 ) predominate over other PGM. The concentrations of copper and δ 65 Cu values in the studied samples of ferroan platinum vary from 0.4 to 1.4 wt % Cu and from –0.37 to 0.26‰, respectively. Secondary low-temperature PGM assemblage is represented by the tetraferroplatinum (PtFe)—tulameenite (PtFe 0.5 Cu 0.5 ) solid solutions series. The concentrations of copper in these PGM vary in the range of 6.8–11.3 wt %; the values of δ 65 Cu are characterized by lighter Cu-isotopic compositions ranging from –1.15 to –0.72‰. The lighter Cu-isotopic composition in secondary Cu-bearing PGM compared to that in ferroan platinum (δ 65 Cu = –1.01 ± 0.17‰, n = 8 and δ 65 Cu = 0.03 ± 0.23‰, n = 7, respectively) is consistent with a secondary nature of isotopic variations, due to evolved composition of the ore-forming fluid during the low-temperature formation of the tetraferroplatinum—tulameenite solid solution series.</description><subject>Chemical composition</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electron microprobe</subject><subject>Electron probe microanalysis</subject><subject>Electron probes</subject><subject>Geochemistry</subject><subject>High temperature</subject><subject>Inclusions</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>International standards</subject><subject>Iridium base alloys</subject><subject>Iron</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Low temperature</subject><subject>Massifs</subject><subject>Minerals</subject><subject>Platinum</subject><subject>Sample preparation</subject><subject>Solid solutions</subject><subject>Spectrometry</subject><issn>1028-334X</issn><issn>1531-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kc1KAzEQgBdRsFYfwFvAq1vztz_xJsVqoVXRFrwtaXa2TdndrEl6qCffwTf0SUyp4EEkhyQz3zeZMFF0TvCAEMavXgimOWP8ldIUU5LQg6hHEkbinCX8MJxDOt7lj6MT59YYc84T0YtWQ9N1YNHYGW86QEPTdMZpr02LTIWe_NfH5wjQVLdgZe1QZU2D_ArQg35ftVs0k0tdo6l0TleXASvLGtB8h16jkbbOo2dwm9q70-ioClE4-9n70Xx0Oxvex5PHu_HwZhIrJnIfi9CZLDMqUpwQIpSCLCsXFcPhM5lUKuELQvJSpYKVWABIosJdwoKIXPGSsn50sa_bWfO2AeeLtdnYNjxZ0JykmHGBeaAGe2opayh0WxlvpQqrhEYr00KlQ_wmxzRL84xnQSB7QVnjnIWq6KxupN0WBBe7CRR_JhAcundcYNsl2N9W_pe-ARpnh_Q</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Malitch, K. N.</creator><creator>Soloshenko, N. G.</creator><creator>Votyakov, S. L.</creator><creator>Badanina, I. Yu</creator><creator>Okuneva, T. G.</creator><creator>Sidoruk, A. R.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20230601</creationdate><title>Copper Isotope Composition of Pt–Fe Minerals from the Nizhny Tagil Massif, Middle Urals: First Results</title><author>Malitch, K. N. ; Soloshenko, N. G. ; Votyakov, S. L. ; Badanina, I. Yu ; Okuneva, T. G. ; Sidoruk, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-9004ad729605119cce77dbf301537acc54b118dc693d09eea1c118aeb198c4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical composition</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electron microprobe</topic><topic>Electron probe microanalysis</topic><topic>Electron probes</topic><topic>Geochemistry</topic><topic>High temperature</topic><topic>Inclusions</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>International standards</topic><topic>Iridium base alloys</topic><topic>Iron</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Low temperature</topic><topic>Massifs</topic><topic>Minerals</topic><topic>Platinum</topic><topic>Sample preparation</topic><topic>Solid solutions</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malitch, K. N.</creatorcontrib><creatorcontrib>Soloshenko, N. G.</creatorcontrib><creatorcontrib>Votyakov, S. L.</creatorcontrib><creatorcontrib>Badanina, I. Yu</creatorcontrib><creatorcontrib>Okuneva, T. G.</creatorcontrib><creatorcontrib>Sidoruk, A. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Doklady earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malitch, K. N.</au><au>Soloshenko, N. G.</au><au>Votyakov, S. L.</au><au>Badanina, I. Yu</au><au>Okuneva, T. G.</au><au>Sidoruk, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copper Isotope Composition of Pt–Fe Minerals from the Nizhny Tagil Massif, Middle Urals: First Results</atitle><jtitle>Doklady earth sciences</jtitle><stitle>Dokl. Earth Sc</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>509</volume><issue>2</issue><spage>196</spage><epage>202</epage><pages>196-202</pages><issn>1028-334X</issn><eissn>1531-8354</eissn><abstract>In order to provide further insights into the origin of Pt–Fe minerals, this study presents the first copper isotope data for Pt–Fe minerals from the Nizhny Tagil massif, an international standard of the zoned Ural-type complexes. The chemical and isotopic composition of Pt–Fe minerals were determined by electron microprobe analysis, chemical sample preparation with selective chromatographic separation of copper from a solution of the studied sample, followed by high-precision determination of the δ 65 Cu value using multiple-collector inductively coupled plasma mass-spectrometry. The majority of platinum group minerals (PGM) from chromitites of the Alexandrovsk Log and Krutoy Log deposits within the Nizhny Tagil massif are formed by Pt–Fe minerals, among which high-temperature ferroan platinum (Pt 2 Fe) containing subordinate inclusions of Os–Ir alloys and laurite (RuS 2 ) predominate over other PGM. The concentrations of copper and δ 65 Cu values in the studied samples of ferroan platinum vary from 0.4 to 1.4 wt % Cu and from –0.37 to 0.26‰, respectively. Secondary low-temperature PGM assemblage is represented by the tetraferroplatinum (PtFe)—tulameenite (PtFe 0.5 Cu 0.5 ) solid solutions series. The concentrations of copper in these PGM vary in the range of 6.8–11.3 wt %; the values of δ 65 Cu are characterized by lighter Cu-isotopic compositions ranging from –1.15 to –0.72‰. The lighter Cu-isotopic composition in secondary Cu-bearing PGM compared to that in ferroan platinum (δ 65 Cu = –1.01 ± 0.17‰, n = 8 and δ 65 Cu = 0.03 ± 0.23‰, n = 7, respectively) is consistent with a secondary nature of isotopic variations, due to evolved composition of the ore-forming fluid during the low-temperature formation of the tetraferroplatinum—tulameenite solid solution series.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028334X22602152</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1028-334X
ispartof Doklady earth sciences, 2023-06, Vol.509 (2), p.196-202
issn 1028-334X
1531-8354
language eng
recordid cdi_proquest_journals_2816034904
source SpringerLink Journals
subjects Chemical composition
Copper
Earth and Environmental Science
Earth Sciences
Electron microprobe
Electron probe microanalysis
Electron probes
Geochemistry
High temperature
Inclusions
Inductively coupled plasma mass spectrometry
International standards
Iridium base alloys
Iron
Isotope composition
Isotopes
Low temperature
Massifs
Minerals
Platinum
Sample preparation
Solid solutions
Spectrometry
title Copper Isotope Composition of Pt–Fe Minerals from the Nizhny Tagil Massif, Middle Urals: First Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copper%20Isotope%20Composition%20of%20Pt%E2%80%93Fe%20Minerals%20from%20the%20Nizhny%20Tagil%20Massif,%20Middle%20Urals:%20First%20Results&rft.jtitle=Doklady%20earth%20sciences&rft.au=Malitch,%20K.%20N.&rft.date=2023-06-01&rft.volume=509&rft.issue=2&rft.spage=196&rft.epage=202&rft.pages=196-202&rft.issn=1028-334X&rft.eissn=1531-8354&rft_id=info:doi/10.1134/S1028334X22602152&rft_dat=%3Cgale_proqu%3EA802768747%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816034904&rft_id=info:pmid/&rft_galeid=A802768747&rfr_iscdi=true