Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs
A novel technique for joint angles trajectory tracking control with energy optimization is proposed for a biped robot with toe foot. For the task of climbing stairs by a 9-link biped model, an adaptive cycloid trajectory for the swing phase is planned as a function of the staircase rise/run ratio. W...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-05, Vol.53 (9), p.10995-11018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11018 |
---|---|
container_issue | 9 |
container_start_page | 10995 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 53 |
creator | Bhardwaj, Gaurav Mishra, Utkarsh A. Sukavanam, N. Balasubramanian, R. |
description | A novel technique for joint angles trajectory tracking control with energy optimization is proposed for a biped robot with toe foot. For the task of climbing stairs by a 9-link biped model, an adaptive cycloid trajectory for the swing phase is planned as a function of the staircase rise/run ratio. We consider Zero Moment Point criteria for satisfying stability constraints. The paper is primarily divided into three sections: 1) Planning stable cycloid trajectory for the initial step and subsequent steps for climbing upstairs. We incorporate inverse kinematics using an unsupervised artificial neural network with a knot shifting procedure for jerk minimization. 2) Developing dynamics for toe-foot biped model using Lagrange formulation along with contact modeling using the spring-damper system. We propose Neural Network Temporal Quantized Lagrange Dynamics, which couples inverse kinematics neural network with dynamics. 3) Using Ant Colony Optimization to tune Proportional-Derivative controller and torso angle in order to minimize joint trajectory errors and total energy consumed. Three cases with variable staircase dimensions have been taken, and a comparison is made to validate the effectiveness of the proposed work. Generated patterns have been simulated in Ⓒ
Matlab
and MuJoCo. |
doi_str_mv | 10.1007/s10489-022-03921-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815843493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815843493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dfa8506cafd2b8ac523aa5be2ebe4682b5db696658b924432c0bfc321ea731f13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9F8tGl7lMUvWPSi4C0kabpmbZtukrJ0f71ZK3jzNMzwvDPMA8AVwTcE4-I2EJyVFcKUIswqShA_AguSFwwVWVUcgwWuaIY4rz5OwVkIG4wxY5gswP7FjF62sDdx5_wXjKYb3GGwHWUf7d7UsJVrL_u1gfXUy87qAHc2fkI96dbZOqHRy43R0fkJNs5DCaMzqHEuQmUHcyC8U6mLDurWdgqGKK0PF-CkkW0wl7_1HLw_3L8tn9Dq9fF5ebdCmpEqorqRZY65lk1NVSl1TpmUuTLUKJPxkqq8VrziPC9V-jFjVGPVaEaJkQUjDWHn4HreO3i3HU2IYuNG36eTgpYkLzOWVSxRdKa0dyF404jB2076SRAsDo7F7Fgkx-LHseApxOZQSHBS5P9W_5P6Bn0xgkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815843493</pqid></control><display><type>article</type><title>Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bhardwaj, Gaurav ; Mishra, Utkarsh A. ; Sukavanam, N. ; Balasubramanian, R.</creator><creatorcontrib>Bhardwaj, Gaurav ; Mishra, Utkarsh A. ; Sukavanam, N. ; Balasubramanian, R.</creatorcontrib><description>A novel technique for joint angles trajectory tracking control with energy optimization is proposed for a biped robot with toe foot. For the task of climbing stairs by a 9-link biped model, an adaptive cycloid trajectory for the swing phase is planned as a function of the staircase rise/run ratio. We consider Zero Moment Point criteria for satisfying stability constraints. The paper is primarily divided into three sections: 1) Planning stable cycloid trajectory for the initial step and subsequent steps for climbing upstairs. We incorporate inverse kinematics using an unsupervised artificial neural network with a knot shifting procedure for jerk minimization. 2) Developing dynamics for toe-foot biped model using Lagrange formulation along with contact modeling using the spring-damper system. We propose Neural Network Temporal Quantized Lagrange Dynamics, which couples inverse kinematics neural network with dynamics. 3) Using Ant Colony Optimization to tune Proportional-Derivative controller and torso angle in order to minimize joint trajectory errors and total energy consumed. Three cases with variable staircase dimensions have been taken, and a comparison is made to validate the effectiveness of the proposed work. Generated patterns have been simulated in Ⓒ
Matlab
and MuJoCo.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-022-03921-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ant colony optimization ; Artificial Intelligence ; Artificial neural networks ; Computer Science ; Cycloids ; Inverse kinematics ; Kinematics ; Machines ; Manufacturing ; Mechanical Engineering ; Neural networks ; Processes ; Proportional derivative ; Robot dynamics ; Stability criteria ; Stairways ; Torso ; Tracking control ; Trajectory control ; Trajectory planning</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2023-05, Vol.53 (9), p.10995-11018</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dfa8506cafd2b8ac523aa5be2ebe4682b5db696658b924432c0bfc321ea731f13</citedby><cites>FETCH-LOGICAL-c319t-dfa8506cafd2b8ac523aa5be2ebe4682b5db696658b924432c0bfc321ea731f13</cites><orcidid>0000-0002-4339-5060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-022-03921-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-022-03921-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bhardwaj, Gaurav</creatorcontrib><creatorcontrib>Mishra, Utkarsh A.</creatorcontrib><creatorcontrib>Sukavanam, N.</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><title>Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>A novel technique for joint angles trajectory tracking control with energy optimization is proposed for a biped robot with toe foot. For the task of climbing stairs by a 9-link biped model, an adaptive cycloid trajectory for the swing phase is planned as a function of the staircase rise/run ratio. We consider Zero Moment Point criteria for satisfying stability constraints. The paper is primarily divided into three sections: 1) Planning stable cycloid trajectory for the initial step and subsequent steps for climbing upstairs. We incorporate inverse kinematics using an unsupervised artificial neural network with a knot shifting procedure for jerk minimization. 2) Developing dynamics for toe-foot biped model using Lagrange formulation along with contact modeling using the spring-damper system. We propose Neural Network Temporal Quantized Lagrange Dynamics, which couples inverse kinematics neural network with dynamics. 3) Using Ant Colony Optimization to tune Proportional-Derivative controller and torso angle in order to minimize joint trajectory errors and total energy consumed. Three cases with variable staircase dimensions have been taken, and a comparison is made to validate the effectiveness of the proposed work. Generated patterns have been simulated in Ⓒ
Matlab
and MuJoCo.</description><subject>Ant colony optimization</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Cycloids</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Processes</subject><subject>Proportional derivative</subject><subject>Robot dynamics</subject><subject>Stability criteria</subject><subject>Stairways</subject><subject>Torso</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9F8tGl7lMUvWPSi4C0kabpmbZtukrJ0f71ZK3jzNMzwvDPMA8AVwTcE4-I2EJyVFcKUIswqShA_AguSFwwVWVUcgwWuaIY4rz5OwVkIG4wxY5gswP7FjF62sDdx5_wXjKYb3GGwHWUf7d7UsJVrL_u1gfXUy87qAHc2fkI96dbZOqHRy43R0fkJNs5DCaMzqHEuQmUHcyC8U6mLDurWdgqGKK0PF-CkkW0wl7_1HLw_3L8tn9Dq9fF5ebdCmpEqorqRZY65lk1NVSl1TpmUuTLUKJPxkqq8VrziPC9V-jFjVGPVaEaJkQUjDWHn4HreO3i3HU2IYuNG36eTgpYkLzOWVSxRdKa0dyF404jB2076SRAsDo7F7Fgkx-LHseApxOZQSHBS5P9W_5P6Bn0xgkI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Bhardwaj, Gaurav</creator><creator>Mishra, Utkarsh A.</creator><creator>Sukavanam, N.</creator><creator>Balasubramanian, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4339-5060</orcidid></search><sort><creationdate>20230501</creationdate><title>Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs</title><author>Bhardwaj, Gaurav ; Mishra, Utkarsh A. ; Sukavanam, N. ; Balasubramanian, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dfa8506cafd2b8ac523aa5be2ebe4682b5db696658b924432c0bfc321ea731f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ant colony optimization</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Cycloids</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Processes</topic><topic>Proportional derivative</topic><topic>Robot dynamics</topic><topic>Stability criteria</topic><topic>Stairways</topic><topic>Torso</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhardwaj, Gaurav</creatorcontrib><creatorcontrib>Mishra, Utkarsh A.</creatorcontrib><creatorcontrib>Sukavanam, N.</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhardwaj, Gaurav</au><au>Mishra, Utkarsh A.</au><au>Sukavanam, N.</au><au>Balasubramanian, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>53</volume><issue>9</issue><spage>10995</spage><epage>11018</epage><pages>10995-11018</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>A novel technique for joint angles trajectory tracking control with energy optimization is proposed for a biped robot with toe foot. For the task of climbing stairs by a 9-link biped model, an adaptive cycloid trajectory for the swing phase is planned as a function of the staircase rise/run ratio. We consider Zero Moment Point criteria for satisfying stability constraints. The paper is primarily divided into three sections: 1) Planning stable cycloid trajectory for the initial step and subsequent steps for climbing upstairs. We incorporate inverse kinematics using an unsupervised artificial neural network with a knot shifting procedure for jerk minimization. 2) Developing dynamics for toe-foot biped model using Lagrange formulation along with contact modeling using the spring-damper system. We propose Neural Network Temporal Quantized Lagrange Dynamics, which couples inverse kinematics neural network with dynamics. 3) Using Ant Colony Optimization to tune Proportional-Derivative controller and torso angle in order to minimize joint trajectory errors and total energy consumed. Three cases with variable staircase dimensions have been taken, and a comparison is made to validate the effectiveness of the proposed work. Generated patterns have been simulated in Ⓒ
Matlab
and MuJoCo.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-022-03921-6</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-4339-5060</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2023-05, Vol.53 (9), p.10995-11018 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2815843493 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ant colony optimization Artificial Intelligence Artificial neural networks Computer Science Cycloids Inverse kinematics Kinematics Machines Manufacturing Mechanical Engineering Neural networks Processes Proportional derivative Robot dynamics Stability criteria Stairways Torso Tracking control Trajectory control Trajectory planning |
title | Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20temporal%20quantized%20lagrange%20dynamics%20with%20cycloidal%20trajectory%20for%20a%20toe-foot%20bipedal%20robot%20to%20climb%20stairs&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Bhardwaj,%20Gaurav&rft.date=2023-05-01&rft.volume=53&rft.issue=9&rft.spage=10995&rft.epage=11018&rft.pages=10995-11018&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-022-03921-6&rft_dat=%3Cproquest_cross%3E2815843493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815843493&rft_id=info:pmid/&rfr_iscdi=true |