Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles

A series of Al 1− x Cu x TiO 3 + δ ( x  = 0.2, 0.4, 0.6 and 0.8) (ACT) nanoparticles were synthesized via hydrothermal method using low operating temperatures. The diffraction patterns confirmed the presence of tetragonal structure including some secondary phases. The well-defined nanosized grains,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-05, Vol.34 (14), p.1174, Article 1174
Hauptverfasser: Madhuri Devi, D., Anita Kumari, P., Satya Vijaya Kumar, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 1174
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Madhuri Devi, D.
Anita Kumari, P.
Satya Vijaya Kumar, N.
description A series of Al 1− x Cu x TiO 3 + δ ( x  = 0.2, 0.4, 0.6 and 0.8) (ACT) nanoparticles were synthesized via hydrothermal method using low operating temperatures. The diffraction patterns confirmed the presence of tetragonal structure including some secondary phases. The well-defined nanosized grains, and particles were detected in the surface morphology. The particle size distribution (PSD) showed the existence of smallest, and largest particles for x  = 0.2–0.8. The presence of Al, Cu, Ti, and O was confirmed from energy dispersive spectral (EDS) analysis. The wide optical bandgap was noticed for all copper concentrations. Moreover, the photocatalytic activity was observed for all samples. The frequency dependence of dielectric constant, and dielectric loss was clearly discussed. The high dielectric constant, and loss were noticed for x  = 0.8 sample, where the copper concentration is high. This can suggest the dielectric absorber applications. The space charge polarization mechanism, and relaxations were clearly understood using dielectric modulus, and impedance spectra. Cole–Cole plots conveyed the relaxation dynamics of x  = 0.2–0.8.
doi_str_mv 10.1007/s10854-023-10608-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815842689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815842689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-642ce4de51db1f5c1752b9527f1c7ac957f4740e7d9239888715fc37731796653</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMoWFf_gKeA143ms0mOy6KrsLAHV_AWsmkiXWpbk_TgvzdawZunF4aZeYcHgGuCbwnG8i4RrARHmDJEcI0VoiegIkIyxBV9PQUV1kIiLig9BxcpHTHGNWeqApvnHCeXp-iXcBhz62y3hLZvYNP6zrscWwfHOIw-5tYnOAS46tbTvt0x2Nt-GG3RXefTJTgLtkv-6vcuwMvD_X79iLa7zdN6tUWOEZ1RzanzvPGCNAcShCNS0IMWVAbipHVlZOCSYy8bTZlWSkkigmNSMiJ1XQu2ADdzbxn1MfmUzXGYYl9eGqqIUJzWShcXnV0uDilFH8wY23cbPw3B5huYmYGZAsz8ADO0hNgcSsXcv_n4V_1P6gvJg2yP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815842689</pqid></control><display><type>article</type><title>Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles</title><source>Springer Nature - Complete Springer Journals</source><creator>Madhuri Devi, D. ; Anita Kumari, P. ; Satya Vijaya Kumar, N.</creator><creatorcontrib>Madhuri Devi, D. ; Anita Kumari, P. ; Satya Vijaya Kumar, N.</creatorcontrib><description>A series of Al 1− x Cu x TiO 3 + δ ( x  = 0.2, 0.4, 0.6 and 0.8) (ACT) nanoparticles were synthesized via hydrothermal method using low operating temperatures. The diffraction patterns confirmed the presence of tetragonal structure including some secondary phases. The well-defined nanosized grains, and particles were detected in the surface morphology. The particle size distribution (PSD) showed the existence of smallest, and largest particles for x  = 0.2–0.8. The presence of Al, Cu, Ti, and O was confirmed from energy dispersive spectral (EDS) analysis. The wide optical bandgap was noticed for all copper concentrations. Moreover, the photocatalytic activity was observed for all samples. The frequency dependence of dielectric constant, and dielectric loss was clearly discussed. The high dielectric constant, and loss were noticed for x  = 0.8 sample, where the copper concentration is high. This can suggest the dielectric absorber applications. The space charge polarization mechanism, and relaxations were clearly understood using dielectric modulus, and impedance spectra. Cole–Cole plots conveyed the relaxation dynamics of x  = 0.2–0.8.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10608-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Dielectric loss ; Dielectric properties ; Diffraction patterns ; Materials Science ; Nanoparticles ; Operating temperature ; Optical and Electronic Materials ; Optical properties ; Particle size distribution ; Permittivity ; Photocatalysis ; Space charge</subject><ispartof>Journal of materials science. Materials in electronics, 2023-05, Vol.34 (14), p.1174, Article 1174</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-642ce4de51db1f5c1752b9527f1c7ac957f4740e7d9239888715fc37731796653</citedby><cites>FETCH-LOGICAL-c319t-642ce4de51db1f5c1752b9527f1c7ac957f4740e7d9239888715fc37731796653</cites><orcidid>0000-0002-5600-1083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10608-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10608-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Madhuri Devi, D.</creatorcontrib><creatorcontrib>Anita Kumari, P.</creatorcontrib><creatorcontrib>Satya Vijaya Kumar, N.</creatorcontrib><title>Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A series of Al 1− x Cu x TiO 3 + δ ( x  = 0.2, 0.4, 0.6 and 0.8) (ACT) nanoparticles were synthesized via hydrothermal method using low operating temperatures. The diffraction patterns confirmed the presence of tetragonal structure including some secondary phases. The well-defined nanosized grains, and particles were detected in the surface morphology. The particle size distribution (PSD) showed the existence of smallest, and largest particles for x  = 0.2–0.8. The presence of Al, Cu, Ti, and O was confirmed from energy dispersive spectral (EDS) analysis. The wide optical bandgap was noticed for all copper concentrations. Moreover, the photocatalytic activity was observed for all samples. The frequency dependence of dielectric constant, and dielectric loss was clearly discussed. The high dielectric constant, and loss were noticed for x  = 0.8 sample, where the copper concentration is high. This can suggest the dielectric absorber applications. The space charge polarization mechanism, and relaxations were clearly understood using dielectric modulus, and impedance spectra. Cole–Cole plots conveyed the relaxation dynamics of x  = 0.2–0.8.</description><subject>Aluminum</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Diffraction patterns</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Particle size distribution</subject><subject>Permittivity</subject><subject>Photocatalysis</subject><subject>Space charge</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAYhIMoWFf_gKeA143ms0mOy6KrsLAHV_AWsmkiXWpbk_TgvzdawZunF4aZeYcHgGuCbwnG8i4RrARHmDJEcI0VoiegIkIyxBV9PQUV1kIiLig9BxcpHTHGNWeqApvnHCeXp-iXcBhz62y3hLZvYNP6zrscWwfHOIw-5tYnOAS46tbTvt0x2Nt-GG3RXefTJTgLtkv-6vcuwMvD_X79iLa7zdN6tUWOEZ1RzanzvPGCNAcShCNS0IMWVAbipHVlZOCSYy8bTZlWSkkigmNSMiJ1XQu2ADdzbxn1MfmUzXGYYl9eGqqIUJzWShcXnV0uDilFH8wY23cbPw3B5huYmYGZAsz8ADO0hNgcSsXcv_n4V_1P6gvJg2yP</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Madhuri Devi, D.</creator><creator>Anita Kumari, P.</creator><creator>Satya Vijaya Kumar, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5600-1083</orcidid></search><sort><creationdate>20230501</creationdate><title>Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles</title><author>Madhuri Devi, D. ; Anita Kumari, P. ; Satya Vijaya Kumar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-642ce4de51db1f5c1752b9527f1c7ac957f4740e7d9239888715fc37731796653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Diffraction patterns</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Particle size distribution</topic><topic>Permittivity</topic><topic>Photocatalysis</topic><topic>Space charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhuri Devi, D.</creatorcontrib><creatorcontrib>Anita Kumari, P.</creatorcontrib><creatorcontrib>Satya Vijaya Kumar, N.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhuri Devi, D.</au><au>Anita Kumari, P.</au><au>Satya Vijaya Kumar, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>34</volume><issue>14</issue><spage>1174</spage><pages>1174-</pages><artnum>1174</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A series of Al 1− x Cu x TiO 3 + δ ( x  = 0.2, 0.4, 0.6 and 0.8) (ACT) nanoparticles were synthesized via hydrothermal method using low operating temperatures. The diffraction patterns confirmed the presence of tetragonal structure including some secondary phases. The well-defined nanosized grains, and particles were detected in the surface morphology. The particle size distribution (PSD) showed the existence of smallest, and largest particles for x  = 0.2–0.8. The presence of Al, Cu, Ti, and O was confirmed from energy dispersive spectral (EDS) analysis. The wide optical bandgap was noticed for all copper concentrations. Moreover, the photocatalytic activity was observed for all samples. The frequency dependence of dielectric constant, and dielectric loss was clearly discussed. The high dielectric constant, and loss were noticed for x  = 0.8 sample, where the copper concentration is high. This can suggest the dielectric absorber applications. The space charge polarization mechanism, and relaxations were clearly understood using dielectric modulus, and impedance spectra. Cole–Cole plots conveyed the relaxation dynamics of x  = 0.2–0.8.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10608-2</doi><orcidid>https://orcid.org/0000-0002-5600-1083</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-05, Vol.34 (14), p.1174, Article 1174
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2815842689
source Springer Nature - Complete Springer Journals
subjects Aluminum
Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Dielectric loss
Dielectric properties
Diffraction patterns
Materials Science
Nanoparticles
Operating temperature
Optical and Electronic Materials
Optical properties
Particle size distribution
Permittivity
Photocatalysis
Space charge
title Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20optical,%20and%20dielectric%20properties%20of%20AlCuTiO3%20nanoparticles&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Madhuri%20Devi,%20D.&rft.date=2023-05-01&rft.volume=34&rft.issue=14&rft.spage=1174&rft.pages=1174-&rft.artnum=1174&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10608-2&rft_dat=%3Cproquest_cross%3E2815842689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815842689&rft_id=info:pmid/&rfr_iscdi=true