X-ray image based on Gray Level Cooccurrence Matrices (GLCM) k-nearest neighbor (KNN) to detect tuberculosis

Tuberculosis is an infectious disease caused by a bacterium called bacillus mycobacterium tuberculosis. Tuberculosis is spread through coughing and sneezing which affects the lungs of people infected with pulmonary tuberculosis. One of the methods is using the thorax image. However, accuracy without...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suhariningsih, Bastomi, Mohammad Yazid, Purwanti, Endah, Hariyani, Dita Aprilia, Permatasari, Perwira Annissa Dyah, Astuti, Suryani Dyah
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2536
creator Suhariningsih
Bastomi, Mohammad Yazid
Purwanti, Endah
Hariyani, Dita Aprilia
Permatasari, Perwira Annissa Dyah
Astuti, Suryani Dyah
description Tuberculosis is an infectious disease caused by a bacterium called bacillus mycobacterium tuberculosis. Tuberculosis is spread through coughing and sneezing which affects the lungs of people infected with pulmonary tuberculosis. One of the methods is using the thorax image. However, accuracy without a standard is the problem in this topic. It's caused by the analysis result depend on the ability of the medical experts only. In this study, a Tuberculosis detection program was designed using the k-nearest neighbor classification method and Gray Level Cooccurrence Matrices (GLCM) features as classification input. So that the detection program was expected to be a tool for medical experts who had standardized accuracy. The GLCM features were to input the k-nearest neighbor (kNN) classification which are contrast, correlation, energy, entropy, and homogeneity. The program output was divided into 2 classes namely abnormal (tuberculosis) and normal. The combination of entropy-correlation and entropy-energy-correlation features by an optimal level of accuracy, sensitivity, and specificity showed a value of k=1 that is 92%, 92%, 92%.
doi_str_mv 10.1063/5.0118948
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2815744065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815744065</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-82a38a2f7ba83ac3d5173943be099449afd981ea937a8a635457367543213a0f3</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKcH_0HAyyZ0Jk3SJEcZOsVuXhR2C2mazs7a1CQd7N_bMcGbpw9eHt734wHgGqMZRhm5YzOEsZBUnIARZgwnPMPZKRghJGmSUrI-BxchbBFKJediBJp14vUe1l96Y2Ghgy2ha-HikOV2Zxs4d86Y3nvbGguXOvra2AAni3y-nMLPpLXa2xBha-vNR-E8nLysVlMYHSxttCbC2BfWm75xoQ6X4KzSTbBXv3cM3h8f3uZPSf66eJ7f50mHMxETkWoidFrxQguiDSkZ5kRSUlgkJaVSV6UU2GpJuBY6I4wyTjLOKEkx0agiY3Bz7O28--6H99TW9b4dJlUqMOOUoowN1O2RCqaOOtauVZ0fRPi9wkgdbCqmfm3-B--c_wNVV1bkB4xnc34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2815744065</pqid></control><display><type>conference_proceeding</type><title>X-ray image based on Gray Level Cooccurrence Matrices (GLCM) k-nearest neighbor (KNN) to detect tuberculosis</title><source>AIP Journals Complete</source><creator>Suhariningsih ; Bastomi, Mohammad Yazid ; Purwanti, Endah ; Hariyani, Dita Aprilia ; Permatasari, Perwira Annissa Dyah ; Astuti, Suryani Dyah</creator><contributor>Ningrum, Ratih Ardiati ; Prastio, Rizki Putra ; Setiadi, Herlambang ; Jiwanti, Prastika Krisma ; Prihandana, Gunawan Setia ; Rizki, Intan Nurul ; Widiyanti, Prihartini</contributor><creatorcontrib>Suhariningsih ; Bastomi, Mohammad Yazid ; Purwanti, Endah ; Hariyani, Dita Aprilia ; Permatasari, Perwira Annissa Dyah ; Astuti, Suryani Dyah ; Ningrum, Ratih Ardiati ; Prastio, Rizki Putra ; Setiadi, Herlambang ; Jiwanti, Prastika Krisma ; Prihandana, Gunawan Setia ; Rizki, Intan Nurul ; Widiyanti, Prihartini</creatorcontrib><description>Tuberculosis is an infectious disease caused by a bacterium called bacillus mycobacterium tuberculosis. Tuberculosis is spread through coughing and sneezing which affects the lungs of people infected with pulmonary tuberculosis. One of the methods is using the thorax image. However, accuracy without a standard is the problem in this topic. It's caused by the analysis result depend on the ability of the medical experts only. In this study, a Tuberculosis detection program was designed using the k-nearest neighbor classification method and Gray Level Cooccurrence Matrices (GLCM) features as classification input. So that the detection program was expected to be a tool for medical experts who had standardized accuracy. The GLCM features were to input the k-nearest neighbor (kNN) classification which are contrast, correlation, energy, entropy, and homogeneity. The program output was divided into 2 classes namely abnormal (tuberculosis) and normal. The combination of entropy-correlation and entropy-energy-correlation features by an optimal level of accuracy, sensitivity, and specificity showed a value of k=1 that is 92%, 92%, 92%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0118948</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Correlation ; Entropy ; Homogeneity ; Infectious diseases ; K-nearest neighbors algorithm ; Medical imaging ; Sneezing ; Thorax ; Tuberculosis</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2536 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0118948$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ningrum, Ratih Ardiati</contributor><contributor>Prastio, Rizki Putra</contributor><contributor>Setiadi, Herlambang</contributor><contributor>Jiwanti, Prastika Krisma</contributor><contributor>Prihandana, Gunawan Setia</contributor><contributor>Rizki, Intan Nurul</contributor><contributor>Widiyanti, Prihartini</contributor><creatorcontrib>Suhariningsih</creatorcontrib><creatorcontrib>Bastomi, Mohammad Yazid</creatorcontrib><creatorcontrib>Purwanti, Endah</creatorcontrib><creatorcontrib>Hariyani, Dita Aprilia</creatorcontrib><creatorcontrib>Permatasari, Perwira Annissa Dyah</creatorcontrib><creatorcontrib>Astuti, Suryani Dyah</creatorcontrib><title>X-ray image based on Gray Level Cooccurrence Matrices (GLCM) k-nearest neighbor (KNN) to detect tuberculosis</title><title>AIP Conference Proceedings</title><description>Tuberculosis is an infectious disease caused by a bacterium called bacillus mycobacterium tuberculosis. Tuberculosis is spread through coughing and sneezing which affects the lungs of people infected with pulmonary tuberculosis. One of the methods is using the thorax image. However, accuracy without a standard is the problem in this topic. It's caused by the analysis result depend on the ability of the medical experts only. In this study, a Tuberculosis detection program was designed using the k-nearest neighbor classification method and Gray Level Cooccurrence Matrices (GLCM) features as classification input. So that the detection program was expected to be a tool for medical experts who had standardized accuracy. The GLCM features were to input the k-nearest neighbor (kNN) classification which are contrast, correlation, energy, entropy, and homogeneity. The program output was divided into 2 classes namely abnormal (tuberculosis) and normal. The combination of entropy-correlation and entropy-energy-correlation features by an optimal level of accuracy, sensitivity, and specificity showed a value of k=1 that is 92%, 92%, 92%.</description><subject>Accuracy</subject><subject>Correlation</subject><subject>Entropy</subject><subject>Homogeneity</subject><subject>Infectious diseases</subject><subject>K-nearest neighbors algorithm</subject><subject>Medical imaging</subject><subject>Sneezing</subject><subject>Thorax</subject><subject>Tuberculosis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEFLwzAYhoMoOKcH_0HAyyZ0Jk3SJEcZOsVuXhR2C2mazs7a1CQd7N_bMcGbpw9eHt734wHgGqMZRhm5YzOEsZBUnIARZgwnPMPZKRghJGmSUrI-BxchbBFKJediBJp14vUe1l96Y2Ghgy2ha-HikOV2Zxs4d86Y3nvbGguXOvra2AAni3y-nMLPpLXa2xBha-vNR-E8nLysVlMYHSxttCbC2BfWm75xoQ6X4KzSTbBXv3cM3h8f3uZPSf66eJ7f50mHMxETkWoidFrxQguiDSkZ5kRSUlgkJaVSV6UU2GpJuBY6I4wyTjLOKEkx0agiY3Bz7O28--6H99TW9b4dJlUqMOOUoowN1O2RCqaOOtauVZ0fRPi9wkgdbCqmfm3-B--c_wNVV1bkB4xnc34</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Suhariningsih</creator><creator>Bastomi, Mohammad Yazid</creator><creator>Purwanti, Endah</creator><creator>Hariyani, Dita Aprilia</creator><creator>Permatasari, Perwira Annissa Dyah</creator><creator>Astuti, Suryani Dyah</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230519</creationdate><title>X-ray image based on Gray Level Cooccurrence Matrices (GLCM) k-nearest neighbor (KNN) to detect tuberculosis</title><author>Suhariningsih ; Bastomi, Mohammad Yazid ; Purwanti, Endah ; Hariyani, Dita Aprilia ; Permatasari, Perwira Annissa Dyah ; Astuti, Suryani Dyah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-82a38a2f7ba83ac3d5173943be099449afd981ea937a8a635457367543213a0f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Correlation</topic><topic>Entropy</topic><topic>Homogeneity</topic><topic>Infectious diseases</topic><topic>K-nearest neighbors algorithm</topic><topic>Medical imaging</topic><topic>Sneezing</topic><topic>Thorax</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suhariningsih</creatorcontrib><creatorcontrib>Bastomi, Mohammad Yazid</creatorcontrib><creatorcontrib>Purwanti, Endah</creatorcontrib><creatorcontrib>Hariyani, Dita Aprilia</creatorcontrib><creatorcontrib>Permatasari, Perwira Annissa Dyah</creatorcontrib><creatorcontrib>Astuti, Suryani Dyah</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suhariningsih</au><au>Bastomi, Mohammad Yazid</au><au>Purwanti, Endah</au><au>Hariyani, Dita Aprilia</au><au>Permatasari, Perwira Annissa Dyah</au><au>Astuti, Suryani Dyah</au><au>Ningrum, Ratih Ardiati</au><au>Prastio, Rizki Putra</au><au>Setiadi, Herlambang</au><au>Jiwanti, Prastika Krisma</au><au>Prihandana, Gunawan Setia</au><au>Rizki, Intan Nurul</au><au>Widiyanti, Prihartini</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>X-ray image based on Gray Level Cooccurrence Matrices (GLCM) k-nearest neighbor (KNN) to detect tuberculosis</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-05-19</date><risdate>2023</risdate><volume>2536</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Tuberculosis is an infectious disease caused by a bacterium called bacillus mycobacterium tuberculosis. Tuberculosis is spread through coughing and sneezing which affects the lungs of people infected with pulmonary tuberculosis. One of the methods is using the thorax image. However, accuracy without a standard is the problem in this topic. It's caused by the analysis result depend on the ability of the medical experts only. In this study, a Tuberculosis detection program was designed using the k-nearest neighbor classification method and Gray Level Cooccurrence Matrices (GLCM) features as classification input. So that the detection program was expected to be a tool for medical experts who had standardized accuracy. The GLCM features were to input the k-nearest neighbor (kNN) classification which are contrast, correlation, energy, entropy, and homogeneity. The program output was divided into 2 classes namely abnormal (tuberculosis) and normal. The combination of entropy-correlation and entropy-energy-correlation features by an optimal level of accuracy, sensitivity, and specificity showed a value of k=1 that is 92%, 92%, 92%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0118948</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2536 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2815744065
source AIP Journals Complete
subjects Accuracy
Correlation
Entropy
Homogeneity
Infectious diseases
K-nearest neighbors algorithm
Medical imaging
Sneezing
Thorax
Tuberculosis
title X-ray image based on Gray Level Cooccurrence Matrices (GLCM) k-nearest neighbor (KNN) to detect tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=X-ray%20image%20based%20on%20Gray%20Level%20Cooccurrence%20Matrices%20(GLCM)%20k-nearest%20neighbor%20(KNN)%20to%20detect%20tuberculosis&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Suhariningsih&rft.date=2023-05-19&rft.volume=2536&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0118948&rft_dat=%3Cproquest_scita%3E2815744065%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815744065&rft_id=info:pmid/&rfr_iscdi=true