Compression and information entropy of binary strings from the collision history of three hard balls

We investigate how to measure and define the entropy of a simple chaotic system, three hard spheres on a ring. A novel approach is presented, which does not assume the ergodic hypothesis. It consists of transforming the particles’ collision history into a sequence of binary digits. We then investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics communications 2023-05, Vol.7 (5), p.55002
Hauptverfasser: Vedak, M, Ackland, G J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55002
container_title Journal of physics communications
container_volume 7
creator Vedak, M
Ackland, G J
description We investigate how to measure and define the entropy of a simple chaotic system, three hard spheres on a ring. A novel approach is presented, which does not assume the ergodic hypothesis. It consists of transforming the particles’ collision history into a sequence of binary digits. We then investigate three approaches which should demonstrate the non-randomness of these collision-generated strings compared with random number generator created strings: Shannon entropy, diehard randomness tests and compression percentage. We show that the Shannon information entropy is unable to distinguish random from deterministic strings. The Diehard test performs better, but for certain mass-ratios the collision-generated strings are misidentified as random with high confidence. The zlib and bz2 compression algorithms are efficient at detecting non-randomness and low information content, with compression efficiencies that tend to 100% in the limit of infinite strings. Thus ‘compression algorithm entropy’ is non-extensive for this chaotic system, in marked contrast to the extensive entropy determined from phase-space integrals by assuming ergodicity.
doi_str_mv 10.1088/2399-6528/acd2a3
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2815475086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fbf880b384bb4ff8b282c269ec157e07</doaj_id><sourcerecordid>2815475086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-31f62861a6bea8071e7dc2e760eeb054636c7e82e55009559c1ac5413fb2b4933</originalsourceid><addsrcrecordid>eNp9kb1PHDEQxVdRIoGAntISRZpcGNvrjy2jEyFISGmS2rK9Y86nvfVim4L_nt3biFAgKo9Hv_dm9KZpLil8p6D1NeNdt5GC6Wvre2b5p-b0tfX5TX3SXJSyBwCmOi64OG36bTpMGUuJaSR27EkcQ8oHW5c_jjWn6ZmkQFwcbX4mpeY4PhQScjqQukPi0zDEo3gXS035CNddRiQ7m3vi7DCU8-ZLsEPBi3_vWfP3582f7a_N_e_bu-2P-41vgdYNp0EyLamVDq0GRVH1nqGSgOhAtJJLr1AzFAKgE6Lz1HrRUh4cc23H-Vlzt_r2ye7NlONh3tkkG82xkfKDsblGP6AJLmgNjuvWuTYE7ZhmnskOPRUKQc1eV6vXlNPjE5Zq9ukpj_P6hmkqWiVAy5mClfI5lZIxvE6lYJbTmCV7s2Rv1tPMkm-rJKbpv-cH-Nd38P3kk1FGGFiyYGbqA38B3mqdqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815475086</pqid></control><display><type>article</type><title>Compression and information entropy of binary strings from the collision history of three hard balls</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><creator>Vedak, M ; Ackland, G J</creator><creatorcontrib>Vedak, M ; Ackland, G J</creatorcontrib><description>We investigate how to measure and define the entropy of a simple chaotic system, three hard spheres on a ring. A novel approach is presented, which does not assume the ergodic hypothesis. It consists of transforming the particles’ collision history into a sequence of binary digits. We then investigate three approaches which should demonstrate the non-randomness of these collision-generated strings compared with random number generator created strings: Shannon entropy, diehard randomness tests and compression percentage. We show that the Shannon information entropy is unable to distinguish random from deterministic strings. The Diehard test performs better, but for certain mass-ratios the collision-generated strings are misidentified as random with high confidence. The zlib and bz2 compression algorithms are efficient at detecting non-randomness and low information content, with compression efficiencies that tend to 100% in the limit of infinite strings. Thus ‘compression algorithm entropy’ is non-extensive for this chaotic system, in marked contrast to the extensive entropy determined from phase-space integrals by assuming ergodicity.</description><identifier>ISSN: 2399-6528</identifier><identifier>EISSN: 2399-6528</identifier><identifier>DOI: 10.1088/2399-6528/acd2a3</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>collision history randomness ; Entropy ; ergodicity of simple systems ; three hard spheres on a ring</subject><ispartof>Journal of physics communications, 2023-05, Vol.7 (5), p.55002</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-31f62861a6bea8071e7dc2e760eeb054636c7e82e55009559c1ac5413fb2b4933</cites><orcidid>0000-0001-5135-1378 ; 0000-0002-1205-7675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2399-6528/acd2a3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Vedak, M</creatorcontrib><creatorcontrib>Ackland, G J</creatorcontrib><title>Compression and information entropy of binary strings from the collision history of three hard balls</title><title>Journal of physics communications</title><addtitle>JPCO</addtitle><addtitle>J. Phys. Commun</addtitle><description>We investigate how to measure and define the entropy of a simple chaotic system, three hard spheres on a ring. A novel approach is presented, which does not assume the ergodic hypothesis. It consists of transforming the particles’ collision history into a sequence of binary digits. We then investigate three approaches which should demonstrate the non-randomness of these collision-generated strings compared with random number generator created strings: Shannon entropy, diehard randomness tests and compression percentage. We show that the Shannon information entropy is unable to distinguish random from deterministic strings. The Diehard test performs better, but for certain mass-ratios the collision-generated strings are misidentified as random with high confidence. The zlib and bz2 compression algorithms are efficient at detecting non-randomness and low information content, with compression efficiencies that tend to 100% in the limit of infinite strings. Thus ‘compression algorithm entropy’ is non-extensive for this chaotic system, in marked contrast to the extensive entropy determined from phase-space integrals by assuming ergodicity.</description><subject>collision history randomness</subject><subject>Entropy</subject><subject>ergodicity of simple systems</subject><subject>three hard spheres on a ring</subject><issn>2399-6528</issn><issn>2399-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kb1PHDEQxVdRIoGAntISRZpcGNvrjy2jEyFISGmS2rK9Y86nvfVim4L_nt3biFAgKo9Hv_dm9KZpLil8p6D1NeNdt5GC6Wvre2b5p-b0tfX5TX3SXJSyBwCmOi64OG36bTpMGUuJaSR27EkcQ8oHW5c_jjWn6ZmkQFwcbX4mpeY4PhQScjqQukPi0zDEo3gXS035CNddRiQ7m3vi7DCU8-ZLsEPBi3_vWfP3582f7a_N_e_bu-2P-41vgdYNp0EyLamVDq0GRVH1nqGSgOhAtJJLr1AzFAKgE6Lz1HrRUh4cc23H-Vlzt_r2ye7NlONh3tkkG82xkfKDsblGP6AJLmgNjuvWuTYE7ZhmnskOPRUKQc1eV6vXlNPjE5Zq9ukpj_P6hmkqWiVAy5mClfI5lZIxvE6lYJbTmCV7s2Rv1tPMkm-rJKbpv-cH-Nd38P3kk1FGGFiyYGbqA38B3mqdqg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Vedak, M</creator><creator>Ackland, G J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5135-1378</orcidid><orcidid>https://orcid.org/0000-0002-1205-7675</orcidid></search><sort><creationdate>20230501</creationdate><title>Compression and information entropy of binary strings from the collision history of three hard balls</title><author>Vedak, M ; Ackland, G J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-31f62861a6bea8071e7dc2e760eeb054636c7e82e55009559c1ac5413fb2b4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>collision history randomness</topic><topic>Entropy</topic><topic>ergodicity of simple systems</topic><topic>three hard spheres on a ring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vedak, M</creatorcontrib><creatorcontrib>Ackland, G J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedak, M</au><au>Ackland, G J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compression and information entropy of binary strings from the collision history of three hard balls</atitle><jtitle>Journal of physics communications</jtitle><stitle>JPCO</stitle><addtitle>J. Phys. Commun</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>7</volume><issue>5</issue><spage>55002</spage><pages>55002-</pages><issn>2399-6528</issn><eissn>2399-6528</eissn><abstract>We investigate how to measure and define the entropy of a simple chaotic system, three hard spheres on a ring. A novel approach is presented, which does not assume the ergodic hypothesis. It consists of transforming the particles’ collision history into a sequence of binary digits. We then investigate three approaches which should demonstrate the non-randomness of these collision-generated strings compared with random number generator created strings: Shannon entropy, diehard randomness tests and compression percentage. We show that the Shannon information entropy is unable to distinguish random from deterministic strings. The Diehard test performs better, but for certain mass-ratios the collision-generated strings are misidentified as random with high confidence. The zlib and bz2 compression algorithms are efficient at detecting non-randomness and low information content, with compression efficiencies that tend to 100% in the limit of infinite strings. Thus ‘compression algorithm entropy’ is non-extensive for this chaotic system, in marked contrast to the extensive entropy determined from phase-space integrals by assuming ergodicity.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2399-6528/acd2a3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5135-1378</orcidid><orcidid>https://orcid.org/0000-0002-1205-7675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-6528
ispartof Journal of physics communications, 2023-05, Vol.7 (5), p.55002
issn 2399-6528
2399-6528
language eng
recordid cdi_proquest_journals_2815475086
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles
subjects collision history randomness
Entropy
ergodicity of simple systems
three hard spheres on a ring
title Compression and information entropy of binary strings from the collision history of three hard balls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compression%20and%20information%20entropy%20of%20binary%20strings%20from%20the%20collision%20history%20of%20three%20hard%20balls&rft.jtitle=Journal%20of%20physics%20communications&rft.au=Vedak,%20M&rft.date=2023-05-01&rft.volume=7&rft.issue=5&rft.spage=55002&rft.pages=55002-&rft.issn=2399-6528&rft.eissn=2399-6528&rft_id=info:doi/10.1088/2399-6528/acd2a3&rft_dat=%3Cproquest_iop_j%3E2815475086%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815475086&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_fbf880b384bb4ff8b282c269ec157e07&rfr_iscdi=true