The comparison of relationship between climate variables and rice productivity in the clustering area on Java Island, Indonesia

This study aims to compare the relationship between climate variables and rice productivity under different irrigation systems (irrigated and rainfed) in the clustering area on Java Island, Indonesia. This study used the clustering areas resulting from the previous study. The climate variables used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2023-05, Vol.1167 (1), p.12016
Hauptverfasser: Aprilina, K, Sopaheluwakan, A, Susandi, A, Hadi, T W, Trilaksono, N J, Lubis, A, Dayantolis, W, Permana, D S, Nuryanto, D E, Anggraeni, R, Komalasari, K E, Fajariana, Y, Yuliyanti, M S, Haryoko, U, Hidayanto, N, Linarka, U A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12016
container_title IOP conference series. Earth and environmental science
container_volume 1167
creator Aprilina, K
Sopaheluwakan, A
Susandi, A
Hadi, T W
Trilaksono, N J
Lubis, A
Dayantolis, W
Permana, D S
Nuryanto, D E
Anggraeni, R
Komalasari, K E
Fajariana, Y
Yuliyanti, M S
Haryoko, U
Hidayanto, N
Linarka, U A
description This study aims to compare the relationship between climate variables and rice productivity under different irrigation systems (irrigated and rainfed) in the clustering area on Java Island, Indonesia. This study used the clustering areas resulting from the previous study. The climate variables used are bias-corrected MERRA2 data from the period 1987–2017, cropped for Java Island. The rice productivity and reference evapotranspiration data used in this study are the results of the simulation of Aquacrop modeling. The result from the cluster method used tends to divide Java Island into 2 clusters with different altitudes (lowland and highland) areas. The results show that the correlation values between the precipitation variable and rice productivity from Aquacrop simulation (both irrigated or rainfed) in cluster 1 (dominated lowlands) are higher than in cluster 2 (dominated highlands), contrary to that the correlation values between the reference evapotranspiration variable with rice productivity from Aquacrop simulation (both irrigated or rainfed) are higher in cluster 2 (dominated highlands) areas, compared to cluster 1 areas (dominated lowlands). R-square values from response surface methodology (RSM) on the rainfed system in both clusters are higher than those on the irrigated system. This indicates that rainfed agriculture is highly dependent on climate variables, especially precipitation and reference evapotranspiration variables compared with the regular irrigated agricultural system. The RSM result also shows that climate variables significantly contribute to the variation of rice productivity generated by Aquacrop modeling in irrigated and rainfed systems and in all clusters.
doi_str_mv 10.1088/1755-1315/1167/1/012016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815471851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815471851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2736-5ca32367d2aa3d2dd9072411f661ea17618dea7a614b16d130f210927eb874093</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoso-PkbDHgSXDeTtkn3KLLqiuDB9Rxmm6kbqUlNuiue_OumrCiC4CmBPO87mSfLjoGfA6-qMaiyHEEO5RhAqjGMOQgOcivb-37Z_r5ztZvtx_jMuVRFPtnLPuZLYrV_6TDY6B3zDQvUYm-9i0vbsQX1b0SO1a19wZ7YOnG4aCkydIYFWxPrgjerurdr278z61g_NLar2FOw7olhIGSp-RbXyGaxTbkzNnPGO4oWD7OdBttIR1_nQfZ4NZ1f3ozu7q9nlxd3o1qoXI7KGnORS2UEYm6EMROuRAHQSAmEoCRUhlChhGIB0qRFGwF8IhQtKlXwSX6QnWx6029fVxR7_exXwaWRWlRQFgqqEhKlNlQdfIyBGt2FtHd418D1YFsPHvXgVA-2NeiN7ZQ83SSt736qp9OH35zuTJPY_A_2vwmfc9OPIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815471851</pqid></control><display><type>article</type><title>The comparison of relationship between climate variables and rice productivity in the clustering area on Java Island, Indonesia</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Aprilina, K ; Sopaheluwakan, A ; Susandi, A ; Hadi, T W ; Trilaksono, N J ; Lubis, A ; Dayantolis, W ; Permana, D S ; Nuryanto, D E ; Anggraeni, R ; Komalasari, K E ; Fajariana, Y ; Yuliyanti, M S ; Haryoko, U ; Hidayanto, N ; Linarka, U A</creator><creatorcontrib>Aprilina, K ; Sopaheluwakan, A ; Susandi, A ; Hadi, T W ; Trilaksono, N J ; Lubis, A ; Dayantolis, W ; Permana, D S ; Nuryanto, D E ; Anggraeni, R ; Komalasari, K E ; Fajariana, Y ; Yuliyanti, M S ; Haryoko, U ; Hidayanto, N ; Linarka, U A</creatorcontrib><description>This study aims to compare the relationship between climate variables and rice productivity under different irrigation systems (irrigated and rainfed) in the clustering area on Java Island, Indonesia. This study used the clustering areas resulting from the previous study. The climate variables used are bias-corrected MERRA2 data from the period 1987–2017, cropped for Java Island. The rice productivity and reference evapotranspiration data used in this study are the results of the simulation of Aquacrop modeling. The result from the cluster method used tends to divide Java Island into 2 clusters with different altitudes (lowland and highland) areas. The results show that the correlation values between the precipitation variable and rice productivity from Aquacrop simulation (both irrigated or rainfed) in cluster 1 (dominated lowlands) are higher than in cluster 2 (dominated highlands), contrary to that the correlation values between the reference evapotranspiration variable with rice productivity from Aquacrop simulation (both irrigated or rainfed) are higher in cluster 2 (dominated highlands) areas, compared to cluster 1 areas (dominated lowlands). R-square values from response surface methodology (RSM) on the rainfed system in both clusters are higher than those on the irrigated system. This indicates that rainfed agriculture is highly dependent on climate variables, especially precipitation and reference evapotranspiration variables compared with the regular irrigated agricultural system. The RSM result also shows that climate variables significantly contribute to the variation of rice productivity generated by Aquacrop modeling in irrigated and rainfed systems and in all clusters.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1167/1/012016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aquacrop crop modeling ; Clustering ; Evapotranspiration ; Farming systems ; Highlands ; Irrigation systems ; Lowlands ; Modelling ; Precipitation ; Productivity ; Rainfall ; Rainfed farming ; Response surface methodology ; Rice ; Rice productivity ; Simulation ; Variables</subject><ispartof>IOP conference series. Earth and environmental science, 2023-05, Vol.1167 (1), p.12016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2736-5ca32367d2aa3d2dd9072411f661ea17618dea7a614b16d130f210927eb874093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1167/1/012016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Aprilina, K</creatorcontrib><creatorcontrib>Sopaheluwakan, A</creatorcontrib><creatorcontrib>Susandi, A</creatorcontrib><creatorcontrib>Hadi, T W</creatorcontrib><creatorcontrib>Trilaksono, N J</creatorcontrib><creatorcontrib>Lubis, A</creatorcontrib><creatorcontrib>Dayantolis, W</creatorcontrib><creatorcontrib>Permana, D S</creatorcontrib><creatorcontrib>Nuryanto, D E</creatorcontrib><creatorcontrib>Anggraeni, R</creatorcontrib><creatorcontrib>Komalasari, K E</creatorcontrib><creatorcontrib>Fajariana, Y</creatorcontrib><creatorcontrib>Yuliyanti, M S</creatorcontrib><creatorcontrib>Haryoko, U</creatorcontrib><creatorcontrib>Hidayanto, N</creatorcontrib><creatorcontrib>Linarka, U A</creatorcontrib><title>The comparison of relationship between climate variables and rice productivity in the clustering area on Java Island, Indonesia</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>This study aims to compare the relationship between climate variables and rice productivity under different irrigation systems (irrigated and rainfed) in the clustering area on Java Island, Indonesia. This study used the clustering areas resulting from the previous study. The climate variables used are bias-corrected MERRA2 data from the period 1987–2017, cropped for Java Island. The rice productivity and reference evapotranspiration data used in this study are the results of the simulation of Aquacrop modeling. The result from the cluster method used tends to divide Java Island into 2 clusters with different altitudes (lowland and highland) areas. The results show that the correlation values between the precipitation variable and rice productivity from Aquacrop simulation (both irrigated or rainfed) in cluster 1 (dominated lowlands) are higher than in cluster 2 (dominated highlands), contrary to that the correlation values between the reference evapotranspiration variable with rice productivity from Aquacrop simulation (both irrigated or rainfed) are higher in cluster 2 (dominated highlands) areas, compared to cluster 1 areas (dominated lowlands). R-square values from response surface methodology (RSM) on the rainfed system in both clusters are higher than those on the irrigated system. This indicates that rainfed agriculture is highly dependent on climate variables, especially precipitation and reference evapotranspiration variables compared with the regular irrigated agricultural system. The RSM result also shows that climate variables significantly contribute to the variation of rice productivity generated by Aquacrop modeling in irrigated and rainfed systems and in all clusters.</description><subject>Aquacrop crop modeling</subject><subject>Clustering</subject><subject>Evapotranspiration</subject><subject>Farming systems</subject><subject>Highlands</subject><subject>Irrigation systems</subject><subject>Lowlands</subject><subject>Modelling</subject><subject>Precipitation</subject><subject>Productivity</subject><subject>Rainfall</subject><subject>Rainfed farming</subject><subject>Response surface methodology</subject><subject>Rice</subject><subject>Rice productivity</subject><subject>Simulation</subject><subject>Variables</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAQhoso-PkbDHgSXDeTtkn3KLLqiuDB9Rxmm6kbqUlNuiue_OumrCiC4CmBPO87mSfLjoGfA6-qMaiyHEEO5RhAqjGMOQgOcivb-37Z_r5ztZvtx_jMuVRFPtnLPuZLYrV_6TDY6B3zDQvUYm-9i0vbsQX1b0SO1a19wZ7YOnG4aCkydIYFWxPrgjerurdr278z61g_NLar2FOw7olhIGSp-RbXyGaxTbkzNnPGO4oWD7OdBttIR1_nQfZ4NZ1f3ozu7q9nlxd3o1qoXI7KGnORS2UEYm6EMROuRAHQSAmEoCRUhlChhGIB0qRFGwF8IhQtKlXwSX6QnWx6029fVxR7_exXwaWRWlRQFgqqEhKlNlQdfIyBGt2FtHd418D1YFsPHvXgVA-2NeiN7ZQ83SSt736qp9OH35zuTJPY_A_2vwmfc9OPIA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Aprilina, K</creator><creator>Sopaheluwakan, A</creator><creator>Susandi, A</creator><creator>Hadi, T W</creator><creator>Trilaksono, N J</creator><creator>Lubis, A</creator><creator>Dayantolis, W</creator><creator>Permana, D S</creator><creator>Nuryanto, D E</creator><creator>Anggraeni, R</creator><creator>Komalasari, K E</creator><creator>Fajariana, Y</creator><creator>Yuliyanti, M S</creator><creator>Haryoko, U</creator><creator>Hidayanto, N</creator><creator>Linarka, U A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20230501</creationdate><title>The comparison of relationship between climate variables and rice productivity in the clustering area on Java Island, Indonesia</title><author>Aprilina, K ; Sopaheluwakan, A ; Susandi, A ; Hadi, T W ; Trilaksono, N J ; Lubis, A ; Dayantolis, W ; Permana, D S ; Nuryanto, D E ; Anggraeni, R ; Komalasari, K E ; Fajariana, Y ; Yuliyanti, M S ; Haryoko, U ; Hidayanto, N ; Linarka, U A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2736-5ca32367d2aa3d2dd9072411f661ea17618dea7a614b16d130f210927eb874093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquacrop crop modeling</topic><topic>Clustering</topic><topic>Evapotranspiration</topic><topic>Farming systems</topic><topic>Highlands</topic><topic>Irrigation systems</topic><topic>Lowlands</topic><topic>Modelling</topic><topic>Precipitation</topic><topic>Productivity</topic><topic>Rainfall</topic><topic>Rainfed farming</topic><topic>Response surface methodology</topic><topic>Rice</topic><topic>Rice productivity</topic><topic>Simulation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprilina, K</creatorcontrib><creatorcontrib>Sopaheluwakan, A</creatorcontrib><creatorcontrib>Susandi, A</creatorcontrib><creatorcontrib>Hadi, T W</creatorcontrib><creatorcontrib>Trilaksono, N J</creatorcontrib><creatorcontrib>Lubis, A</creatorcontrib><creatorcontrib>Dayantolis, W</creatorcontrib><creatorcontrib>Permana, D S</creatorcontrib><creatorcontrib>Nuryanto, D E</creatorcontrib><creatorcontrib>Anggraeni, R</creatorcontrib><creatorcontrib>Komalasari, K E</creatorcontrib><creatorcontrib>Fajariana, Y</creatorcontrib><creatorcontrib>Yuliyanti, M S</creatorcontrib><creatorcontrib>Haryoko, U</creatorcontrib><creatorcontrib>Hidayanto, N</creatorcontrib><creatorcontrib>Linarka, U A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprilina, K</au><au>Sopaheluwakan, A</au><au>Susandi, A</au><au>Hadi, T W</au><au>Trilaksono, N J</au><au>Lubis, A</au><au>Dayantolis, W</au><au>Permana, D S</au><au>Nuryanto, D E</au><au>Anggraeni, R</au><au>Komalasari, K E</au><au>Fajariana, Y</au><au>Yuliyanti, M S</au><au>Haryoko, U</au><au>Hidayanto, N</au><au>Linarka, U A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The comparison of relationship between climate variables and rice productivity in the clustering area on Java Island, Indonesia</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>1167</volume><issue>1</issue><spage>12016</spage><pages>12016-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>This study aims to compare the relationship between climate variables and rice productivity under different irrigation systems (irrigated and rainfed) in the clustering area on Java Island, Indonesia. This study used the clustering areas resulting from the previous study. The climate variables used are bias-corrected MERRA2 data from the period 1987–2017, cropped for Java Island. The rice productivity and reference evapotranspiration data used in this study are the results of the simulation of Aquacrop modeling. The result from the cluster method used tends to divide Java Island into 2 clusters with different altitudes (lowland and highland) areas. The results show that the correlation values between the precipitation variable and rice productivity from Aquacrop simulation (both irrigated or rainfed) in cluster 1 (dominated lowlands) are higher than in cluster 2 (dominated highlands), contrary to that the correlation values between the reference evapotranspiration variable with rice productivity from Aquacrop simulation (both irrigated or rainfed) are higher in cluster 2 (dominated highlands) areas, compared to cluster 1 areas (dominated lowlands). R-square values from response surface methodology (RSM) on the rainfed system in both clusters are higher than those on the irrigated system. This indicates that rainfed agriculture is highly dependent on climate variables, especially precipitation and reference evapotranspiration variables compared with the regular irrigated agricultural system. The RSM result also shows that climate variables significantly contribute to the variation of rice productivity generated by Aquacrop modeling in irrigated and rainfed systems and in all clusters.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1167/1/012016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2023-05, Vol.1167 (1), p.12016
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2815471851
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Aquacrop crop modeling
Clustering
Evapotranspiration
Farming systems
Highlands
Irrigation systems
Lowlands
Modelling
Precipitation
Productivity
Rainfall
Rainfed farming
Response surface methodology
Rice
Rice productivity
Simulation
Variables
title The comparison of relationship between climate variables and rice productivity in the clustering area on Java Island, Indonesia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20comparison%20of%20relationship%20between%20climate%20variables%20and%20rice%20productivity%20in%20the%20clustering%20area%20on%20Java%20Island,%20Indonesia&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Aprilina,%20K&rft.date=2023-05-01&rft.volume=1167&rft.issue=1&rft.spage=12016&rft.pages=12016-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1167/1/012016&rft_dat=%3Cproquest_cross%3E2815471851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815471851&rft_id=info:pmid/&rfr_iscdi=true