Ultra-stretchable hydrogel thermocouples for intelligent wearables

Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2023-05, Vol.66 (5), p.1934-1940
Hauptverfasser: Zhao, Yifan, Fu, Xifan, Liu, Binghan, Sun, Jiantao, Zhuang, Zihan, Yang, Peihua, Zhong, Junwen, Liu, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1940
container_issue 5
container_start_page 1934
container_title Science China materials
container_volume 66
creator Zhao, Yifan
Fu, Xifan
Liu, Binghan
Sun, Jiantao
Zhuang, Zihan
Yang, Peihua
Zhong, Junwen
Liu, Kang
description Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K −1 and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.
doi_str_mv 10.1007/s40843-022-2300-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815363425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815363425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wVXEdz82yWOviCATfOOqTt7TzoNGOSIvPv7VDBlat7Ft85Fz5CboHdA2PmIUlWSkEZ55QLxqi4IDMO1lKpGFyOmVlFS871NVmktGeMgVYAtpyRp3WXo6cpR8z11lcdFttTE8MGuyJvMR5CHYZjh6loQyx2fcau222wz8U3-njm0w25an2XcPF752T98vy5fKOrj9f35eOK1kLZTKVpQJcVqlYaW0NTKa2EBfCNBMSmBpCgjVGVaqxB4IYprbWvNAchrTRiTu6m3WMMXwOm7PZhiP340vESlNBCcjVSMFF1DClFbN0x7g4-nhwwd7blJltutOXOtpwYO3zqpJHtNxj_lv8v_QAPN2ua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815363425</pqid></control><display><type>article</type><title>Ultra-stretchable hydrogel thermocouples for intelligent wearables</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Yifan ; Fu, Xifan ; Liu, Binghan ; Sun, Jiantao ; Zhuang, Zihan ; Yang, Peihua ; Zhong, Junwen ; Liu, Kang</creator><creatorcontrib>Zhao, Yifan ; Fu, Xifan ; Liu, Binghan ; Sun, Jiantao ; Zhuang, Zihan ; Yang, Peihua ; Zhong, Junwen ; Liu, Kang</creatorcontrib><description>Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K −1 and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-022-2300-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Formability ; Hydrogels ; Materials Science ; Sensors ; Stretching ; Temperature effects ; Temperature sensors ; Tensile strain ; Thermistors ; Thermocouples ; Thermoregulation</subject><ispartof>Science China materials, 2023-05, Vol.66 (5), p.1934-1940</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</citedby><cites>FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-022-2300-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-022-2300-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Fu, Xifan</creatorcontrib><creatorcontrib>Liu, Binghan</creatorcontrib><creatorcontrib>Sun, Jiantao</creatorcontrib><creatorcontrib>Zhuang, Zihan</creatorcontrib><creatorcontrib>Yang, Peihua</creatorcontrib><creatorcontrib>Zhong, Junwen</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><title>Ultra-stretchable hydrogel thermocouples for intelligent wearables</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K −1 and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>Materials Science</subject><subject>Sensors</subject><subject>Stretching</subject><subject>Temperature effects</subject><subject>Temperature sensors</subject><subject>Tensile strain</subject><subject>Thermistors</subject><subject>Thermocouples</subject><subject>Thermoregulation</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIzzA9wVXEdz82yWOviCATfOOqTt7TzoNGOSIvPv7VDBlat7Ft85Fz5CboHdA2PmIUlWSkEZ55QLxqi4IDMO1lKpGFyOmVlFS871NVmktGeMgVYAtpyRp3WXo6cpR8z11lcdFttTE8MGuyJvMR5CHYZjh6loQyx2fcau222wz8U3-njm0w25an2XcPF752T98vy5fKOrj9f35eOK1kLZTKVpQJcVqlYaW0NTKa2EBfCNBMSmBpCgjVGVaqxB4IYprbWvNAchrTRiTu6m3WMMXwOm7PZhiP340vESlNBCcjVSMFF1DClFbN0x7g4-nhwwd7blJltutOXOtpwYO3zqpJHtNxj_lv8v_QAPN2ua</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhao, Yifan</creator><creator>Fu, Xifan</creator><creator>Liu, Binghan</creator><creator>Sun, Jiantao</creator><creator>Zhuang, Zihan</creator><creator>Yang, Peihua</creator><creator>Zhong, Junwen</creator><creator>Liu, Kang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Ultra-stretchable hydrogel thermocouples for intelligent wearables</title><author>Zhao, Yifan ; Fu, Xifan ; Liu, Binghan ; Sun, Jiantao ; Zhuang, Zihan ; Yang, Peihua ; Zhong, Junwen ; Liu, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>Materials Science</topic><topic>Sensors</topic><topic>Stretching</topic><topic>Temperature effects</topic><topic>Temperature sensors</topic><topic>Tensile strain</topic><topic>Thermistors</topic><topic>Thermocouples</topic><topic>Thermoregulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Fu, Xifan</creatorcontrib><creatorcontrib>Liu, Binghan</creatorcontrib><creatorcontrib>Sun, Jiantao</creatorcontrib><creatorcontrib>Zhuang, Zihan</creatorcontrib><creatorcontrib>Yang, Peihua</creatorcontrib><creatorcontrib>Zhong, Junwen</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yifan</au><au>Fu, Xifan</au><au>Liu, Binghan</au><au>Sun, Jiantao</au><au>Zhuang, Zihan</au><au>Yang, Peihua</au><au>Zhong, Junwen</au><au>Liu, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-stretchable hydrogel thermocouples for intelligent wearables</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>66</volume><issue>5</issue><spage>1934</spage><epage>1940</epage><pages>1934-1940</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K −1 and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-022-2300-3</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-05, Vol.66 (5), p.1934-1940
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2815363425
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Chemistry/Food Science
Formability
Hydrogels
Materials Science
Sensors
Stretching
Temperature effects
Temperature sensors
Tensile strain
Thermistors
Thermocouples
Thermoregulation
title Ultra-stretchable hydrogel thermocouples for intelligent wearables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-stretchable%20hydrogel%20thermocouples%20for%20intelligent%20wearables&rft.jtitle=Science%20China%20materials&rft.au=Zhao,%20Yifan&rft.date=2023-05-01&rft.volume=66&rft.issue=5&rft.spage=1934&rft.epage=1940&rft.pages=1934-1940&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-022-2300-3&rft_dat=%3Cproquest_cross%3E2815363425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815363425&rft_id=info:pmid/&rfr_iscdi=true