Ultra-stretchable hydrogel thermocouples for intelligent wearables
Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable...
Gespeichert in:
Veröffentlicht in: | Science China materials 2023-05, Vol.66 (5), p.1934-1940 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1940 |
---|---|
container_issue | 5 |
container_start_page | 1934 |
container_title | Science China materials |
container_volume | 66 |
creator | Zhao, Yifan Fu, Xifan Liu, Binghan Sun, Jiantao Zhuang, Zihan Yang, Peihua Zhong, Junwen Liu, Kang |
description | Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K
−1
and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables. |
doi_str_mv | 10.1007/s40843-022-2300-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815363425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815363425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wVXEdz82yWOviCATfOOqTt7TzoNGOSIvPv7VDBlat7Ft85Fz5CboHdA2PmIUlWSkEZ55QLxqi4IDMO1lKpGFyOmVlFS871NVmktGeMgVYAtpyRp3WXo6cpR8z11lcdFttTE8MGuyJvMR5CHYZjh6loQyx2fcau222wz8U3-njm0w25an2XcPF752T98vy5fKOrj9f35eOK1kLZTKVpQJcVqlYaW0NTKa2EBfCNBMSmBpCgjVGVaqxB4IYprbWvNAchrTRiTu6m3WMMXwOm7PZhiP340vESlNBCcjVSMFF1DClFbN0x7g4-nhwwd7blJltutOXOtpwYO3zqpJHtNxj_lv8v_QAPN2ua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815363425</pqid></control><display><type>article</type><title>Ultra-stretchable hydrogel thermocouples for intelligent wearables</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Yifan ; Fu, Xifan ; Liu, Binghan ; Sun, Jiantao ; Zhuang, Zihan ; Yang, Peihua ; Zhong, Junwen ; Liu, Kang</creator><creatorcontrib>Zhao, Yifan ; Fu, Xifan ; Liu, Binghan ; Sun, Jiantao ; Zhuang, Zihan ; Yang, Peihua ; Zhong, Junwen ; Liu, Kang</creatorcontrib><description>Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K
−1
and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-022-2300-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Formability ; Hydrogels ; Materials Science ; Sensors ; Stretching ; Temperature effects ; Temperature sensors ; Tensile strain ; Thermistors ; Thermocouples ; Thermoregulation</subject><ispartof>Science China materials, 2023-05, Vol.66 (5), p.1934-1940</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</citedby><cites>FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-022-2300-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-022-2300-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Fu, Xifan</creatorcontrib><creatorcontrib>Liu, Binghan</creatorcontrib><creatorcontrib>Sun, Jiantao</creatorcontrib><creatorcontrib>Zhuang, Zihan</creatorcontrib><creatorcontrib>Yang, Peihua</creatorcontrib><creatorcontrib>Zhong, Junwen</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><title>Ultra-stretchable hydrogel thermocouples for intelligent wearables</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K
−1
and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>Materials Science</subject><subject>Sensors</subject><subject>Stretching</subject><subject>Temperature effects</subject><subject>Temperature sensors</subject><subject>Tensile strain</subject><subject>Thermistors</subject><subject>Thermocouples</subject><subject>Thermoregulation</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIzzA9wVXEdz82yWOviCATfOOqTt7TzoNGOSIvPv7VDBlat7Ft85Fz5CboHdA2PmIUlWSkEZ55QLxqi4IDMO1lKpGFyOmVlFS871NVmktGeMgVYAtpyRp3WXo6cpR8z11lcdFttTE8MGuyJvMR5CHYZjh6loQyx2fcau222wz8U3-njm0w25an2XcPF752T98vy5fKOrj9f35eOK1kLZTKVpQJcVqlYaW0NTKa2EBfCNBMSmBpCgjVGVaqxB4IYprbWvNAchrTRiTu6m3WMMXwOm7PZhiP340vESlNBCcjVSMFF1DClFbN0x7g4-nhwwd7blJltutOXOtpwYO3zqpJHtNxj_lv8v_QAPN2ua</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhao, Yifan</creator><creator>Fu, Xifan</creator><creator>Liu, Binghan</creator><creator>Sun, Jiantao</creator><creator>Zhuang, Zihan</creator><creator>Yang, Peihua</creator><creator>Zhong, Junwen</creator><creator>Liu, Kang</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Ultra-stretchable hydrogel thermocouples for intelligent wearables</title><author>Zhao, Yifan ; Fu, Xifan ; Liu, Binghan ; Sun, Jiantao ; Zhuang, Zihan ; Yang, Peihua ; Zhong, Junwen ; Liu, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-47d168be5f479c1db5653911ad41eedc11416775b5d97e12705666ab621349473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>Materials Science</topic><topic>Sensors</topic><topic>Stretching</topic><topic>Temperature effects</topic><topic>Temperature sensors</topic><topic>Tensile strain</topic><topic>Thermistors</topic><topic>Thermocouples</topic><topic>Thermoregulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yifan</creatorcontrib><creatorcontrib>Fu, Xifan</creatorcontrib><creatorcontrib>Liu, Binghan</creatorcontrib><creatorcontrib>Sun, Jiantao</creatorcontrib><creatorcontrib>Zhuang, Zihan</creatorcontrib><creatorcontrib>Yang, Peihua</creatorcontrib><creatorcontrib>Zhong, Junwen</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yifan</au><au>Fu, Xifan</au><au>Liu, Binghan</au><au>Sun, Jiantao</au><au>Zhuang, Zihan</au><au>Yang, Peihua</au><au>Zhong, Junwen</au><au>Liu, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-stretchable hydrogel thermocouples for intelligent wearables</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>66</volume><issue>5</issue><spage>1934</spage><epage>1940</epage><pages>1934-1940</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Stretchable temperature sensors are necessary to enable tactile interaction and thermoregulation in the human body and soft robots. These sensors should be conformably adhered to a deformable surface and maintain temperature perception accuracy when stretched. However, current mainstream stretchable temperature sensors based on thermistors suffer from inherently unstable sensing during stretching due to the mutual interference of resistance changes caused by temperature and mechanical deformations. Herein, we propose an ultra-stretchable hydrogel thermocouple that provides unaltered temperature sensing upon stretching. The ultrastretchability of this thermocouple is achieved by constructing thermogalvanic hydrogels with dynamic crosslinked double networks. By connecting P-type and N-type thermogalvanic hydrogels, the thermocouple exhibits a high equivalent See-beck coefficient of 1.93 mV K
−1
and a stable sensitivity even under a 100% tensile strain. The advantage of this ultra-stretchable thermocouple is demonstrated in a smart glove prototype, which enables haptic feedback. Our work provides a new strategy for stretchable temperature sensors and may promote the development of intelligent wearables.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-022-2300-3</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2023-05, Vol.66 (5), p.1934-1940 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2815363425 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Chemistry and Materials Science Chemistry/Food Science Formability Hydrogels Materials Science Sensors Stretching Temperature effects Temperature sensors Tensile strain Thermistors Thermocouples Thermoregulation |
title | Ultra-stretchable hydrogel thermocouples for intelligent wearables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-stretchable%20hydrogel%20thermocouples%20for%20intelligent%20wearables&rft.jtitle=Science%20China%20materials&rft.au=Zhao,%20Yifan&rft.date=2023-05-01&rft.volume=66&rft.issue=5&rft.spage=1934&rft.epage=1940&rft.pages=1934-1940&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-022-2300-3&rft_dat=%3Cproquest_cross%3E2815363425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815363425&rft_id=info:pmid/&rfr_iscdi=true |