An error distribution-related function-trained two-dimensional InSAR phase unwrapping method via U-GauNet
Phase unwrapping (PU) has always been a critical and challenging step in interferometric synthetic aperture radar data processing. Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2023-07, Vol.17 (5), p.2653-2660 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2660 |
---|---|
container_issue | 5 |
container_start_page | 2653 |
container_title | Signal, image and video processing |
container_volume | 17 |
creator | Chen, Xiaomao He, Chao Huang, Ying |
description | Phase unwrapping (PU) has always been a critical and challenging step in interferometric synthetic aperture radar data processing. Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network models and regards the PU as a two-stage process. In the first stage, the phase ambiguity gradient is directly estimated from the wrapped phase by the proposed U-GauNet which is based on the U-Net architecture, combines with the Global Attention Upsample module and removes the one-step decoder module. The U-GauNet is trained by the Cross-Entropy and a loss function which is related to the error distribution and proposed to punish the error zero gradient pixels that we find will make a significant influence to the PU result from aspects of the number and the percentage. In the second stage, the L1-norm is used to minimize the difference between the true ambiguity gradient and the results of the stage one to achieve the PU result. The proposed method is tested on the simulated data and true data of Three Gorges in China. Experimental results demonstrate the result of the proposed method is more credible than traditional 2-D PU methods. |
doi_str_mv | 10.1007/s11760-022-02482-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815344668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815344668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f3a03884202407424116c3e1b4ac079282453a319795943edb0c08a6ba48d7263</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg0f4BTwHP0Xw1yR5L0VooCmrPIbubbVPa7JpkLf33xq7ozYFhhsd7j5kHwA3BdwRjeR8JkQIjTGlurig6noERUYIhIgk5_90xuwTjGLc4F6NSCTUCbuqhDaENsHYxBVf2ybUeBbszydaw6X11AlIwzmcgHVpUu731MaNmBxf-bfoKu42JFvb-EEzXOb-Ge5s2bQ0_nYErNDf9s03X4KIxu2jHP_MKrB4f3mdPaPkyX8ymS1RRiRNqmMFMKU7zK1hyygkRFbOk5KbCsqCK8gkzjBSymBSc2brEFVZGlIarWlLBrsDt4NuF9qO3Melt24d8a9RUkQnjXAiVWXRgVaGNMdhGd8HtTThqgvV3qnpIVedU9SlVfcwiNohiJvu1DX_W_6i-AE2veio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815344668</pqid></control><display><type>article</type><title>An error distribution-related function-trained two-dimensional InSAR phase unwrapping method via U-GauNet</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Xiaomao ; He, Chao ; Huang, Ying</creator><creatorcontrib>Chen, Xiaomao ; He, Chao ; Huang, Ying</creatorcontrib><description>Phase unwrapping (PU) has always been a critical and challenging step in interferometric synthetic aperture radar data processing. Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network models and regards the PU as a two-stage process. In the first stage, the phase ambiguity gradient is directly estimated from the wrapped phase by the proposed U-GauNet which is based on the U-Net architecture, combines with the Global Attention Upsample module and removes the one-step decoder module. The U-GauNet is trained by the Cross-Entropy and a loss function which is related to the error distribution and proposed to punish the error zero gradient pixels that we find will make a significant influence to the PU result from aspects of the number and the percentage. In the second stage, the L1-norm is used to minimize the difference between the true ambiguity gradient and the results of the stage one to achieve the PU result. The proposed method is tested on the simulated data and true data of Three Gorges in China. Experimental results demonstrate the result of the proposed method is more credible than traditional 2-D PU methods.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-022-02482-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Ambiguity ; Artificial neural networks ; Computer Imaging ; Computer Science ; Data processing ; Errors ; Image Processing and Computer Vision ; Interferometric synthetic aperture radar ; Modules ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Phase unwrapping ; Radar data ; Semantic segmentation ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2023-07, Vol.17 (5), p.2653-2660</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f3a03884202407424116c3e1b4ac079282453a319795943edb0c08a6ba48d7263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-022-02482-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-022-02482-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chen, Xiaomao</creatorcontrib><creatorcontrib>He, Chao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><title>An error distribution-related function-trained two-dimensional InSAR phase unwrapping method via U-GauNet</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Phase unwrapping (PU) has always been a critical and challenging step in interferometric synthetic aperture radar data processing. Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network models and regards the PU as a two-stage process. In the first stage, the phase ambiguity gradient is directly estimated from the wrapped phase by the proposed U-GauNet which is based on the U-Net architecture, combines with the Global Attention Upsample module and removes the one-step decoder module. The U-GauNet is trained by the Cross-Entropy and a loss function which is related to the error distribution and proposed to punish the error zero gradient pixels that we find will make a significant influence to the PU result from aspects of the number and the percentage. In the second stage, the L1-norm is used to minimize the difference between the true ambiguity gradient and the results of the stage one to achieve the PU result. The proposed method is tested on the simulated data and true data of Three Gorges in China. Experimental results demonstrate the result of the proposed method is more credible than traditional 2-D PU methods.</description><subject>Ambiguity</subject><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Data processing</subject><subject>Errors</subject><subject>Image Processing and Computer Vision</subject><subject>Interferometric synthetic aperture radar</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Phase unwrapping</subject><subject>Radar data</subject><subject>Semantic segmentation</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg0f4BTwHP0Xw1yR5L0VooCmrPIbubbVPa7JpkLf33xq7ozYFhhsd7j5kHwA3BdwRjeR8JkQIjTGlurig6noERUYIhIgk5_90xuwTjGLc4F6NSCTUCbuqhDaENsHYxBVf2ybUeBbszydaw6X11AlIwzmcgHVpUu731MaNmBxf-bfoKu42JFvb-EEzXOb-Ge5s2bQ0_nYErNDf9s03X4KIxu2jHP_MKrB4f3mdPaPkyX8ymS1RRiRNqmMFMKU7zK1hyygkRFbOk5KbCsqCK8gkzjBSymBSc2brEFVZGlIarWlLBrsDt4NuF9qO3Melt24d8a9RUkQnjXAiVWXRgVaGNMdhGd8HtTThqgvV3qnpIVedU9SlVfcwiNohiJvu1DX_W_6i-AE2veio</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Xiaomao</creator><creator>He, Chao</creator><creator>Huang, Ying</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>An error distribution-related function-trained two-dimensional InSAR phase unwrapping method via U-GauNet</title><author>Chen, Xiaomao ; He, Chao ; Huang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f3a03884202407424116c3e1b4ac079282453a319795943edb0c08a6ba48d7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ambiguity</topic><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Data processing</topic><topic>Errors</topic><topic>Image Processing and Computer Vision</topic><topic>Interferometric synthetic aperture radar</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Phase unwrapping</topic><topic>Radar data</topic><topic>Semantic segmentation</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaomao</creatorcontrib><creatorcontrib>He, Chao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaomao</au><au>He, Chao</au><au>Huang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An error distribution-related function-trained two-dimensional InSAR phase unwrapping method via U-GauNet</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>17</volume><issue>5</issue><spage>2653</spage><epage>2660</epage><pages>2653-2660</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Phase unwrapping (PU) has always been a critical and challenging step in interferometric synthetic aperture radar data processing. Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network models and regards the PU as a two-stage process. In the first stage, the phase ambiguity gradient is directly estimated from the wrapped phase by the proposed U-GauNet which is based on the U-Net architecture, combines with the Global Attention Upsample module and removes the one-step decoder module. The U-GauNet is trained by the Cross-Entropy and a loss function which is related to the error distribution and proposed to punish the error zero gradient pixels that we find will make a significant influence to the PU result from aspects of the number and the percentage. In the second stage, the L1-norm is used to minimize the difference between the true ambiguity gradient and the results of the stage one to achieve the PU result. The proposed method is tested on the simulated data and true data of Three Gorges in China. Experimental results demonstrate the result of the proposed method is more credible than traditional 2-D PU methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-022-02482-y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2023-07, Vol.17 (5), p.2653-2660 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2815344668 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ambiguity Artificial neural networks Computer Imaging Computer Science Data processing Errors Image Processing and Computer Vision Interferometric synthetic aperture radar Modules Multimedia Information Systems Original Paper Pattern Recognition and Graphics Phase unwrapping Radar data Semantic segmentation Signal,Image and Speech Processing Vision |
title | An error distribution-related function-trained two-dimensional InSAR phase unwrapping method via U-GauNet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20error%20distribution-related%20function-trained%20two-dimensional%20InSAR%20phase%20unwrapping%20method%20via%20U-GauNet&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Chen,%20Xiaomao&rft.date=2023-07-01&rft.volume=17&rft.issue=5&rft.spage=2653&rft.epage=2660&rft.pages=2653-2660&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-022-02482-y&rft_dat=%3Cproquest_cross%3E2815344668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815344668&rft_id=info:pmid/&rfr_iscdi=true |