Anisotropic Localized Wavelets for Image Processing
This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical der...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2023-03, Vol.33 (1), p.11-21 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Pattern recognition and image analysis |
container_volume | 33 |
creator | Wang, Qingzheng |
description | This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint. |
doi_str_mv | 10.1134/S1054661822040149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815344128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815344128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-483bce33f4cc00c80c38609d86cf422f94de3c6da63eacbf67350ba6328737933</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZTDabPZbin8KCgorHJc0my5Z2U5OtoJ_elAoexNPM8H7vDTzGLhGuEUncPCMUQkpUnIMAFNURm2BRFLnkyI_TnuR8r5-ysxhXAKCw4hNGs6GPfgx-25us9kav-y_bZm_6w67tGDPnQ7bY6M5mT8EbG2M_dOfsxOl1tBc_c8pe725f5g95_Xi_mM_q3HCpxlwoWhpL5IQxAEaBISWhapU0TnDuKtFaMrLVkqw2SydLKmCZLq5KKiuiKbs65G6Df9_ZODYrvwtDetlwhQUJgVwlCg-UCT7GYF2zDf1Gh88Godl30_zpJnn4wRMTO3Q2_Cb_b_oGIg5kPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815344128</pqid></control><display><type>article</type><title>Anisotropic Localized Wavelets for Image Processing</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Qingzheng</creator><creatorcontrib>Wang, Qingzheng</creatorcontrib><description>This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661822040149</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Computer Science ; Image analysis ; Image processing ; Image Processing and Computer Vision ; Kernels ; Mathematical Theory of Images and Signals Representing ; Pattern Recognition ; Processing ; Recognition and Understanding</subject><ispartof>Pattern recognition and image analysis, 2023-03, Vol.33 (1), p.11-21</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 1, pp. 11–21. © Pleiades Publishing, Ltd., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-483bce33f4cc00c80c38609d86cf422f94de3c6da63eacbf67350ba6328737933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661822040149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661822040149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Qingzheng</creatorcontrib><title>Anisotropic Localized Wavelets for Image Processing</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.</description><subject>Analysis</subject><subject>Computer Science</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Kernels</subject><subject>Mathematical Theory of Images and Signals Representing</subject><subject>Pattern Recognition</subject><subject>Processing</subject><subject>Recognition and Understanding</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZTDabPZbin8KCgorHJc0my5Z2U5OtoJ_elAoexNPM8H7vDTzGLhGuEUncPCMUQkpUnIMAFNURm2BRFLnkyI_TnuR8r5-ysxhXAKCw4hNGs6GPfgx-25us9kav-y_bZm_6w67tGDPnQ7bY6M5mT8EbG2M_dOfsxOl1tBc_c8pe725f5g95_Xi_mM_q3HCpxlwoWhpL5IQxAEaBISWhapU0TnDuKtFaMrLVkqw2SydLKmCZLq5KKiuiKbs65G6Df9_ZODYrvwtDetlwhQUJgVwlCg-UCT7GYF2zDf1Gh88Godl30_zpJnn4wRMTO3Q2_Cb_b_oGIg5kPA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Qingzheng</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230301</creationdate><title>Anisotropic Localized Wavelets for Image Processing</title><author>Wang, Qingzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-483bce33f4cc00c80c38609d86cf422f94de3c6da63eacbf67350ba6328737933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Computer Science</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Kernels</topic><topic>Mathematical Theory of Images and Signals Representing</topic><topic>Pattern Recognition</topic><topic>Processing</topic><topic>Recognition and Understanding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingzheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Localized Wavelets for Image Processing</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661822040149</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2023-03, Vol.33 (1), p.11-21 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_journals_2815344128 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Computer Science Image analysis Image processing Image Processing and Computer Vision Kernels Mathematical Theory of Images and Signals Representing Pattern Recognition Processing Recognition and Understanding |
title | Anisotropic Localized Wavelets for Image Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Localized%20Wavelets%20for%20Image%20Processing&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Wang,%20Qingzheng&rft.date=2023-03-01&rft.volume=33&rft.issue=1&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661822040149&rft_dat=%3Cproquest_cross%3E2815344128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815344128&rft_id=info:pmid/&rfr_iscdi=true |