Anisotropic Localized Wavelets for Image Processing

This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2023-03, Vol.33 (1), p.11-21
1. Verfasser: Wang, Qingzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 11
container_title Pattern recognition and image analysis
container_volume 33
creator Wang, Qingzheng
description This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.
doi_str_mv 10.1134/S1054661822040149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815344128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815344128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-483bce33f4cc00c80c38609d86cf422f94de3c6da63eacbf67350ba6328737933</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZTDabPZbin8KCgorHJc0my5Z2U5OtoJ_elAoexNPM8H7vDTzGLhGuEUncPCMUQkpUnIMAFNURm2BRFLnkyI_TnuR8r5-ysxhXAKCw4hNGs6GPfgx-25us9kav-y_bZm_6w67tGDPnQ7bY6M5mT8EbG2M_dOfsxOl1tBc_c8pe725f5g95_Xi_mM_q3HCpxlwoWhpL5IQxAEaBISWhapU0TnDuKtFaMrLVkqw2SydLKmCZLq5KKiuiKbs65G6Df9_ZODYrvwtDetlwhQUJgVwlCg-UCT7GYF2zDf1Gh88Godl30_zpJnn4wRMTO3Q2_Cb_b_oGIg5kPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815344128</pqid></control><display><type>article</type><title>Anisotropic Localized Wavelets for Image Processing</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Qingzheng</creator><creatorcontrib>Wang, Qingzheng</creatorcontrib><description>This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661822040149</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Computer Science ; Image analysis ; Image processing ; Image Processing and Computer Vision ; Kernels ; Mathematical Theory of Images and Signals Representing ; Pattern Recognition ; Processing ; Recognition and Understanding</subject><ispartof>Pattern recognition and image analysis, 2023-03, Vol.33 (1), p.11-21</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2023, Vol. 33, No. 1, pp. 11–21. © Pleiades Publishing, Ltd., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-483bce33f4cc00c80c38609d86cf422f94de3c6da63eacbf67350ba6328737933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661822040149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661822040149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Qingzheng</creatorcontrib><title>Anisotropic Localized Wavelets for Image Processing</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.</description><subject>Analysis</subject><subject>Computer Science</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Kernels</subject><subject>Mathematical Theory of Images and Signals Representing</subject><subject>Pattern Recognition</subject><subject>Processing</subject><subject>Recognition and Understanding</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC59WZTDabPZbin8KCgorHJc0my5Z2U5OtoJ_elAoexNPM8H7vDTzGLhGuEUncPCMUQkpUnIMAFNURm2BRFLnkyI_TnuR8r5-ysxhXAKCw4hNGs6GPfgx-25us9kav-y_bZm_6w67tGDPnQ7bY6M5mT8EbG2M_dOfsxOl1tBc_c8pe725f5g95_Xi_mM_q3HCpxlwoWhpL5IQxAEaBISWhapU0TnDuKtFaMrLVkqw2SydLKmCZLq5KKiuiKbs65G6Df9_ZODYrvwtDetlwhQUJgVwlCg-UCT7GYF2zDf1Gh88Godl30_zpJnn4wRMTO3Q2_Cb_b_oGIg5kPA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Qingzheng</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230301</creationdate><title>Anisotropic Localized Wavelets for Image Processing</title><author>Wang, Qingzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-483bce33f4cc00c80c38609d86cf422f94de3c6da63eacbf67350ba6328737933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Computer Science</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Kernels</topic><topic>Mathematical Theory of Images and Signals Representing</topic><topic>Pattern Recognition</topic><topic>Processing</topic><topic>Recognition and Understanding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingzheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Localized Wavelets for Image Processing</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>This paper proposes novel anisotropic localized wavelets (ALWs) for structure-preserving image analysis and processing. It is formulated as the negative first-order derivative of the fundamental solution of heat diffusion equation with respect to time, which is based on the rigorous mathematical derivation. Our ALW inherits powerful properties from Mexican hat wavelets in spirit. It also intrinsically conveys and encodes local and global structural properties. First, we construct anisotropic heat kernel by embedding the intrinsic structure into graph Laplacian, and on such basis, ALW is derived from the heat kernel difference of adjacent layers in image pyramid or adjacent time frequency in intralayer. We perform extensive experiments on image processing and conduct quantitative comparisons with other state-of-the-art methods. All the results demonstrate the superiority of our method in accuracy and versatility towards global salient structure and local detail preservation, noise compression and gradient reversion restraint.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661822040149</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2023-03, Vol.33 (1), p.11-21
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_journals_2815344128
source Springer Nature - Complete Springer Journals
subjects Analysis
Computer Science
Image analysis
Image processing
Image Processing and Computer Vision
Kernels
Mathematical Theory of Images and Signals Representing
Pattern Recognition
Processing
Recognition and Understanding
title Anisotropic Localized Wavelets for Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Localized%20Wavelets%20for%20Image%20Processing&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Wang,%20Qingzheng&rft.date=2023-03-01&rft.volume=33&rft.issue=1&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661822040149&rft_dat=%3Cproquest_cross%3E2815344128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815344128&rft_id=info:pmid/&rfr_iscdi=true