Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet

Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-05, Vol.13 (19), p.n/a
Hauptverfasser: Shao, Ping, Zhang, Hai‐Xia, Hong, Qin‐Long, Yi, Luocai, Li, Qiao‐Hong, Zhang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced energy materials
container_volume 13
creator Shao, Ping
Zhang, Hai‐Xia
Hong, Qin‐Long
Yi, Luocai
Li, Qiao‐Hong
Zhang, Jian
description Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4. A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.
doi_str_mv 10.1002/aenm.202300088
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2815146677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815146677</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-534679ace153c88002e0f301264a8a8c00147b204abd835401ea98c44dd919a23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoKLVXzwueo7MfTTbHGqIWqh6s5zAmU5ua7MbN1hJPHj2KP9FfYkulp5mBh3l5nyA443DBAcQlkmkuBAgJAFofBCc84iqMtILD_S7FcTDsuuUGAZVwkPIk6DOzQFNU5oWlD4JlNRXeWUflqvCVNcxblvlFX5Mh9l4hS23bkvv9-nms6ndybIampIal6LHuO88qw66ss-b383vSVCV-2Bo9sWuHDa2te2X3aGy3IPKnwdEc646G_3MQPF1ns_Q2nD7cTNLxNGyFlDocSRXFCRbER7LQetOVYC6Bi0ihRl0AcBU_C1D4XGo5UsAJE10oVZYJT1DIQXC--9s6-7aizudLu3JmE5kLzUdcRVEcb6hkR62rmvq8dVWDrs855Fu9-VZvvtebj7P7u_0l_wDlfXKb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815146677</pqid></control><display><type>article</type><title>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shao, Ping ; Zhang, Hai‐Xia ; Hong, Qin‐Long ; Yi, Luocai ; Li, Qiao‐Hong ; Zhang, Jian</creator><creatorcontrib>Shao, Ping ; Zhang, Hai‐Xia ; Hong, Qin‐Long ; Yi, Luocai ; Li, Qiao‐Hong ; Zhang, Jian</creatorcontrib><description>Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4. A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300088</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzoates ; Boron ; Carbon dioxide ; Catalysts ; Chemical reduction ; Chemical synthesis ; CO 2 reduction ; Coordination ; Copper ; Density functional theory ; electrocatalysis ; Ethylene ; metal‐organic frameworks ; Nanoparticles ; Nanosheets ; Silver ; tandem catalysts</subject><ispartof>Advanced energy materials, 2023-05, Vol.13 (19), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3373-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shao, Ping</creatorcontrib><creatorcontrib>Zhang, Hai‐Xia</creatorcontrib><creatorcontrib>Hong, Qin‐Long</creatorcontrib><creatorcontrib>Yi, Luocai</creatorcontrib><creatorcontrib>Li, Qiao‐Hong</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><title>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</title><title>Advanced energy materials</title><description>Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4. A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.</description><subject>Benzoates</subject><subject>Boron</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>CO 2 reduction</subject><subject>Coordination</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Ethylene</subject><subject>metal‐organic frameworks</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Silver</subject><subject>tandem catalysts</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoKLVXzwueo7MfTTbHGqIWqh6s5zAmU5ua7MbN1hJPHj2KP9FfYkulp5mBh3l5nyA443DBAcQlkmkuBAgJAFofBCc84iqMtILD_S7FcTDsuuUGAZVwkPIk6DOzQFNU5oWlD4JlNRXeWUflqvCVNcxblvlFX5Mh9l4hS23bkvv9-nms6ndybIampIal6LHuO88qw66ss-b383vSVCV-2Bo9sWuHDa2te2X3aGy3IPKnwdEc646G_3MQPF1ns_Q2nD7cTNLxNGyFlDocSRXFCRbER7LQetOVYC6Bi0ihRl0AcBU_C1D4XGo5UsAJE10oVZYJT1DIQXC--9s6-7aizudLu3JmE5kLzUdcRVEcb6hkR62rmvq8dVWDrs855Fu9-VZvvtebj7P7u_0l_wDlfXKb</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Shao, Ping</creator><creator>Zhang, Hai‐Xia</creator><creator>Hong, Qin‐Long</creator><creator>Yi, Luocai</creator><creator>Li, Qiao‐Hong</creator><creator>Zhang, Jian</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3373-9621</orcidid></search><sort><creationdate>20230519</creationdate><title>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</title><author>Shao, Ping ; Zhang, Hai‐Xia ; Hong, Qin‐Long ; Yi, Luocai ; Li, Qiao‐Hong ; Zhang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-534679ace153c88002e0f301264a8a8c00147b204abd835401ea98c44dd919a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benzoates</topic><topic>Boron</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>CO 2 reduction</topic><topic>Coordination</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Ethylene</topic><topic>metal‐organic frameworks</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Silver</topic><topic>tandem catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Ping</creatorcontrib><creatorcontrib>Zhang, Hai‐Xia</creatorcontrib><creatorcontrib>Hong, Qin‐Long</creatorcontrib><creatorcontrib>Yi, Luocai</creatorcontrib><creatorcontrib>Li, Qiao‐Hong</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Ping</au><au>Zhang, Hai‐Xia</au><au>Hong, Qin‐Long</au><au>Yi, Luocai</au><au>Li, Qiao‐Hong</au><au>Zhang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</atitle><jtitle>Advanced energy materials</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>13</volume><issue>19</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4. A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300088</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3373-9621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-05, Vol.13 (19), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2815146677
source Wiley Online Library Journals Frontfile Complete
subjects Benzoates
Boron
Carbon dioxide
Catalysts
Chemical reduction
Chemical synthesis
CO 2 reduction
Coordination
Copper
Density functional theory
electrocatalysis
Ethylene
metal‐organic frameworks
Nanoparticles
Nanosheets
Silver
tandem catalysts
title Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20CO2%20Electroreduction%20to%20Ethylene%20via%20Copper%E2%88%92Silver%20Tandem%20Catalyst%20in%20Boron%E2%80%90Imidazolate%20Framework%20Nanosheet&rft.jtitle=Advanced%20energy%20materials&rft.au=Shao,%20Ping&rft.date=2023-05-19&rft.volume=13&rft.issue=19&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300088&rft_dat=%3Cproquest_wiley%3E2815146677%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815146677&rft_id=info:pmid/&rfr_iscdi=true