Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet
Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-05, Vol.13 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Shao, Ping Zhang, Hai‐Xia Hong, Qin‐Long Yi, Luocai Li, Qiao‐Hong Zhang, Jian |
description | Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4.
A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites. |
doi_str_mv | 10.1002/aenm.202300088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2815146677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815146677</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-534679ace153c88002e0f301264a8a8c00147b204abd835401ea98c44dd919a23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoKLVXzwueo7MfTTbHGqIWqh6s5zAmU5ua7MbN1hJPHj2KP9FfYkulp5mBh3l5nyA443DBAcQlkmkuBAgJAFofBCc84iqMtILD_S7FcTDsuuUGAZVwkPIk6DOzQFNU5oWlD4JlNRXeWUflqvCVNcxblvlFX5Mh9l4hS23bkvv9-nms6ndybIampIal6LHuO88qw66ss-b383vSVCV-2Bo9sWuHDa2te2X3aGy3IPKnwdEc646G_3MQPF1ns_Q2nD7cTNLxNGyFlDocSRXFCRbER7LQetOVYC6Bi0ihRl0AcBU_C1D4XGo5UsAJE10oVZYJT1DIQXC--9s6-7aizudLu3JmE5kLzUdcRVEcb6hkR62rmvq8dVWDrs855Fu9-VZvvtebj7P7u_0l_wDlfXKb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815146677</pqid></control><display><type>article</type><title>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shao, Ping ; Zhang, Hai‐Xia ; Hong, Qin‐Long ; Yi, Luocai ; Li, Qiao‐Hong ; Zhang, Jian</creator><creatorcontrib>Shao, Ping ; Zhang, Hai‐Xia ; Hong, Qin‐Long ; Yi, Luocai ; Li, Qiao‐Hong ; Zhang, Jian</creatorcontrib><description>Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4.
A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300088</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Benzoates ; Boron ; Carbon dioxide ; Catalysts ; Chemical reduction ; Chemical synthesis ; CO 2 reduction ; Coordination ; Copper ; Density functional theory ; electrocatalysis ; Ethylene ; metal‐organic frameworks ; Nanoparticles ; Nanosheets ; Silver ; tandem catalysts</subject><ispartof>Advanced energy materials, 2023-05, Vol.13 (19), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3373-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shao, Ping</creatorcontrib><creatorcontrib>Zhang, Hai‐Xia</creatorcontrib><creatorcontrib>Hong, Qin‐Long</creatorcontrib><creatorcontrib>Yi, Luocai</creatorcontrib><creatorcontrib>Li, Qiao‐Hong</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><title>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</title><title>Advanced energy materials</title><description>Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4.
A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.</description><subject>Benzoates</subject><subject>Boron</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>CO 2 reduction</subject><subject>Coordination</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Ethylene</subject><subject>metal‐organic frameworks</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Silver</subject><subject>tandem catalysts</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoKLVXzwueo7MfTTbHGqIWqh6s5zAmU5ua7MbN1hJPHj2KP9FfYkulp5mBh3l5nyA443DBAcQlkmkuBAgJAFofBCc84iqMtILD_S7FcTDsuuUGAZVwkPIk6DOzQFNU5oWlD4JlNRXeWUflqvCVNcxblvlFX5Mh9l4hS23bkvv9-nms6ndybIampIal6LHuO88qw66ss-b383vSVCV-2Bo9sWuHDa2te2X3aGy3IPKnwdEc646G_3MQPF1ns_Q2nD7cTNLxNGyFlDocSRXFCRbER7LQetOVYC6Bi0ihRl0AcBU_C1D4XGo5UsAJE10oVZYJT1DIQXC--9s6-7aizudLu3JmE5kLzUdcRVEcb6hkR62rmvq8dVWDrs855Fu9-VZvvtebj7P7u_0l_wDlfXKb</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Shao, Ping</creator><creator>Zhang, Hai‐Xia</creator><creator>Hong, Qin‐Long</creator><creator>Yi, Luocai</creator><creator>Li, Qiao‐Hong</creator><creator>Zhang, Jian</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3373-9621</orcidid></search><sort><creationdate>20230519</creationdate><title>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</title><author>Shao, Ping ; Zhang, Hai‐Xia ; Hong, Qin‐Long ; Yi, Luocai ; Li, Qiao‐Hong ; Zhang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-534679ace153c88002e0f301264a8a8c00147b204abd835401ea98c44dd919a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benzoates</topic><topic>Boron</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>CO 2 reduction</topic><topic>Coordination</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Ethylene</topic><topic>metal‐organic frameworks</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Silver</topic><topic>tandem catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Ping</creatorcontrib><creatorcontrib>Zhang, Hai‐Xia</creatorcontrib><creatorcontrib>Hong, Qin‐Long</creatorcontrib><creatorcontrib>Yi, Luocai</creatorcontrib><creatorcontrib>Li, Qiao‐Hong</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Ping</au><au>Zhang, Hai‐Xia</au><au>Hong, Qin‐Long</au><au>Yi, Luocai</au><au>Li, Qiao‐Hong</au><au>Zhang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet</atitle><jtitle>Advanced energy materials</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>13</volume><issue>19</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Copper‐based tandem catalysts with a well‐defined Cu coordination environment for the electrochemical CO2 reduction reaction (CO2RR) are highly desirable, due to their unique geometric‐electronic properties and helpfulness for revealing structure–property correlations. Here, this work synthesizes a tandem catalyst at atomic configuration scale, Ag@BIF‐104NSs(Cu), by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Due to the highly ordered benzoate ligands decorated on the Cu sites of BIF‐104NSs(Cu), Ag NPs are located in atomic proximity to Cu sites via a coordination effect. Electrochemical CO2RR measurements show this tandem catalyst highly improves the selectivity and activity for the CO2 reduction to ethylene. The faradaic efficiency (FEC2H4) of 21.43% is significantly higher than that of BIF‐104NSs(Cu) (3.82%). Further, density functional theory calculations reveal that the Ag sites in the composite can efficiently reduce CO2 to *CO, that subsequently migrate to the Cu sites. Thereafter, the Cu–Ag atom pair is responsible for the C–C coupling of the local enriched *CO and further formation of C2H4.
A copper‐silver tandem catalyst is synthesized at atomic configuration scale, by using the ultrathin boron imidazolate framework (BIF) nanosheets as support to load Ag nanoparticles (NPs). Ag@BIF‐104NSs(Cu) shows higher catalytic activity and selectivity for C2H4 than BIF‐104NSs(Cu), because the Cu–Ag atom pair can effectively enhance the C–C coupling of the local enriched *CO from Ag sites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300088</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3373-9621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-05, Vol.13 (19), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2815146677 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Benzoates Boron Carbon dioxide Catalysts Chemical reduction Chemical synthesis CO 2 reduction Coordination Copper Density functional theory electrocatalysis Ethylene metal‐organic frameworks Nanoparticles Nanosheets Silver tandem catalysts |
title | Enhancing CO2 Electroreduction to Ethylene via Copper−Silver Tandem Catalyst in Boron‐Imidazolate Framework Nanosheet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20CO2%20Electroreduction%20to%20Ethylene%20via%20Copper%E2%88%92Silver%20Tandem%20Catalyst%20in%20Boron%E2%80%90Imidazolate%20Framework%20Nanosheet&rft.jtitle=Advanced%20energy%20materials&rft.au=Shao,%20Ping&rft.date=2023-05-19&rft.volume=13&rft.issue=19&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300088&rft_dat=%3Cproquest_wiley%3E2815146677%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815146677&rft_id=info:pmid/&rfr_iscdi=true |