A Deep Learning Approach to Credit Scoring Using Credit History Data

The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023, Vol.44 (1), p.198-204
Hauptverfasser: Smirnov, V. S., Stupnikov, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 1
container_start_page 198
container_title Lobachevskii journal of mathematics
container_volume 44
creator Smirnov, V. S.
Stupnikov, S. A.
description The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.
doi_str_mv 10.1134/S1995080223010365
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814911227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814911227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1835-f1f26891cd025c854931e028551f3ff02a5536ff2a7aa604b041c255cafb9b3b3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEHPCdY9ceowQoUiWG0jlyXBtSQRLsdOi_x1ErMSCWu9N9j3sQcgvsHoDnD2vQWjDFEDkDxqU4IzNQoDKtJZ6nOsHZhF-Sqxh3LBGllDNSFbRybqArZ0LXdu-0GIbQG_tBx56WwW3bka5tHyZoE6d4ai7bOPbhQCszmmty4c1ndDenPCebp8e3cpmtXp9fymKVWVBcZB48SqXBbhkKq0SuOTiGSgjw3HuGRgguvUezMEayvGE5WBTCGt_ohjd8Tu6OvmnF772LY73r96FLI2tUkGsAxEViwZFlQx9jcL4eQvtlwqEGVk_Pqv88K2nwqInDdKoLv87_i34AkvpowQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814911227</pqid></control><display><type>article</type><title>A Deep Learning Approach to Credit Scoring Using Credit History Data</title><source>SpringerNature Journals</source><creator>Smirnov, V. S. ; Stupnikov, S. A.</creator><creatorcontrib>Smirnov, V. S. ; Stupnikov, S. A.</creatorcontrib><description>The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223010365</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Customers ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Recurrent neural networks</subject><ispartof>Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.198-204</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1835-f1f26891cd025c854931e028551f3ff02a5536ff2a7aa604b041c255cafb9b3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223010365$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223010365$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Smirnov, V. S.</creatorcontrib><creatorcontrib>Stupnikov, S. A.</creatorcontrib><title>A Deep Learning Approach to Credit Scoring Using Credit History Data</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Customers</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Recurrent neural networks</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMIPYLPEHPCdY9ceowQoUiWG0jlyXBtSQRLsdOi_x1ErMSCWu9N9j3sQcgvsHoDnD2vQWjDFEDkDxqU4IzNQoDKtJZ6nOsHZhF-Sqxh3LBGllDNSFbRybqArZ0LXdu-0GIbQG_tBx56WwW3bka5tHyZoE6d4ai7bOPbhQCszmmty4c1ndDenPCebp8e3cpmtXp9fymKVWVBcZB48SqXBbhkKq0SuOTiGSgjw3HuGRgguvUezMEayvGE5WBTCGt_ohjd8Tu6OvmnF772LY73r96FLI2tUkGsAxEViwZFlQx9jcL4eQvtlwqEGVk_Pqv88K2nwqInDdKoLv87_i34AkvpowQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Smirnov, V. S.</creator><creator>Stupnikov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A Deep Learning Approach to Credit Scoring Using Credit History Data</title><author>Smirnov, V. S. ; Stupnikov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1835-f1f26891cd025c854931e028551f3ff02a5536ff2a7aa604b041c255cafb9b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Customers</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, V. S.</creatorcontrib><creatorcontrib>Stupnikov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, V. S.</au><au>Stupnikov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach to Credit Scoring Using Credit History Data</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>198</spage><epage>204</epage><pages>198-204</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223010365</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.198-204
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2814911227
source SpringerNature Journals
subjects Algebra
Analysis
Customers
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Recurrent neural networks
title A Deep Learning Approach to Credit Scoring Using Credit History Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20to%20Credit%20Scoring%20Using%20Credit%20History%20Data&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Smirnov,%20V.%20S.&rft.date=2023&rft.volume=44&rft.issue=1&rft.spage=198&rft.epage=204&rft.pages=198-204&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223010365&rft_dat=%3Cproquest_cross%3E2814911227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814911227&rft_id=info:pmid/&rfr_iscdi=true