A Deep Learning Approach to Credit Scoring Using Credit History Data
The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2023, Vol.44 (1), p.198-204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | Lobachevskii journal of mathematics |
container_volume | 44 |
creator | Smirnov, V. S. Stupnikov, S. A. |
description | The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks. |
doi_str_mv | 10.1134/S1995080223010365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814911227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814911227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1835-f1f26891cd025c854931e028551f3ff02a5536ff2a7aa604b041c255cafb9b3b3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPEHPCdY9ceowQoUiWG0jlyXBtSQRLsdOi_x1ErMSCWu9N9j3sQcgvsHoDnD2vQWjDFEDkDxqU4IzNQoDKtJZ6nOsHZhF-Sqxh3LBGllDNSFbRybqArZ0LXdu-0GIbQG_tBx56WwW3bka5tHyZoE6d4ai7bOPbhQCszmmty4c1ndDenPCebp8e3cpmtXp9fymKVWVBcZB48SqXBbhkKq0SuOTiGSgjw3HuGRgguvUezMEayvGE5WBTCGt_ohjd8Tu6OvmnF772LY73r96FLI2tUkGsAxEViwZFlQx9jcL4eQvtlwqEGVk_Pqv88K2nwqInDdKoLv87_i34AkvpowQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814911227</pqid></control><display><type>article</type><title>A Deep Learning Approach to Credit Scoring Using Credit History Data</title><source>SpringerNature Journals</source><creator>Smirnov, V. S. ; Stupnikov, S. A.</creator><creatorcontrib>Smirnov, V. S. ; Stupnikov, S. A.</creatorcontrib><description>The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223010365</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Customers ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Recurrent neural networks</subject><ispartof>Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.198-204</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1835-f1f26891cd025c854931e028551f3ff02a5536ff2a7aa604b041c255cafb9b3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223010365$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223010365$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Smirnov, V. S.</creatorcontrib><creatorcontrib>Stupnikov, S. A.</creatorcontrib><title>A Deep Learning Approach to Credit Scoring Using Credit History Data</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Customers</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Recurrent neural networks</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMIPYLPEHPCdY9ceowQoUiWG0jlyXBtSQRLsdOi_x1ErMSCWu9N9j3sQcgvsHoDnD2vQWjDFEDkDxqU4IzNQoDKtJZ6nOsHZhF-Sqxh3LBGllDNSFbRybqArZ0LXdu-0GIbQG_tBx56WwW3bka5tHyZoE6d4ai7bOPbhQCszmmty4c1ndDenPCebp8e3cpmtXp9fymKVWVBcZB48SqXBbhkKq0SuOTiGSgjw3HuGRgguvUezMEayvGE5WBTCGt_ohjd8Tu6OvmnF772LY73r96FLI2tUkGsAxEViwZFlQx9jcL4eQvtlwqEGVk_Pqv88K2nwqInDdKoLv87_i34AkvpowQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Smirnov, V. S.</creator><creator>Stupnikov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A Deep Learning Approach to Credit Scoring Using Credit History Data</title><author>Smirnov, V. S. ; Stupnikov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1835-f1f26891cd025c854931e028551f3ff02a5536ff2a7aa604b041c255cafb9b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Customers</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, V. S.</creatorcontrib><creatorcontrib>Stupnikov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, V. S.</au><au>Stupnikov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach to Credit Scoring Using Credit History Data</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>198</spage><epage>204</epage><pages>198-204</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The paper discusses an approach to credit scoring of retail customers in the banking industry. The approach is based on the development of recurrent neural network models on customer’s credit history data. The advantages and disadvantages of the approach are discussed. A couple of solutions aimed to serve as a baseline for the approach are implemented using traditional approaches to credit scoring and evaluated over two datasets from large European banks.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223010365</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.198-204 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2814911227 |
source | SpringerNature Journals |
subjects | Algebra Analysis Customers Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Recurrent neural networks |
title | A Deep Learning Approach to Credit Scoring Using Credit History Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20to%20Credit%20Scoring%20Using%20Credit%20History%20Data&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Smirnov,%20V.%20S.&rft.date=2023&rft.volume=44&rft.issue=1&rft.spage=198&rft.epage=204&rft.pages=198-204&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223010365&rft_dat=%3Cproquest_cross%3E2814911227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814911227&rft_id=info:pmid/&rfr_iscdi=true |