Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions

One of significant tasks in autonomous vehicle technology is traffic signs recognizing. It helps to avoid traffic violations on the road. However, recognition of traffic signs becomes more complicated in bad weather such as lack of light, rain, fog. Those bad weather conditions cause low accuracy of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2023-07, Vol.79 (10), p.10706-10724
Hauptverfasser: Dang, Thi Phuc, Tran, Ngoc Trinh, To, Van Hau, Tran Thi, Minh Khoa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10724
container_issue 10
container_start_page 10706
container_title The Journal of supercomputing
container_volume 79
creator Dang, Thi Phuc
Tran, Ngoc Trinh
To, Van Hau
Tran Thi, Minh Khoa
description One of significant tasks in autonomous vehicle technology is traffic signs recognizing. It helps to avoid traffic violations on the road. However, recognition of traffic signs becomes more complicated in bad weather such as lack of light, rain, fog. Those bad weather conditions cause low accuracy of detecting and recognizing. In this paper, we aim to build a model to recognize and classify the traffic signs in different bad weather conditions by applying deep learning technique. Weather data are collected from variety types as well as generated from different techniques. Collected data are trained on the YOLOv5s, YOLOv7 model. In order to increase the accuracy, those YOLOv5s are improved on different models by replacing Squeeze-and-Excitation (SE) attention module or Global Context(GC) block. On the test set: the accuracy of YOLOv5s is 76.8%, the accuracy of YOLOv7 is 78% the accuracy of YOLOv5s+SE attention module is 78.4% and the accuracy of YOLOv5s+C3GC is 79.2%. The results show that YOLOv5s+C3GC model significantly improves the accuracy in recognition of blurred-distant-objects.
doi_str_mv 10.1007/s11227-023-05097-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814911215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814911215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5f7342f3f01e31a182d9e89fc7a847b4dcc21fce8f9c17ccca608d51fe3d41ab3</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKt_wFXAdTSTh8ldSvFRKBRBF65CmkdNae-tyW3Ff2_sFdy5GmbmnDPDh9Al0GugVN0UAMYUoYwTKmmjCD9CI5CqtkKLYzSiDaNES8FO0VkpK0qp4IqP0PN0s83dPnj8Np_N9xLHLuMc7Jr0aRNwn22MyeGSlm2pc9ct29SnrsWpxQvr8Wew_XvI2HWtPyzKOTqJdl3CxW8do9eH-5fJE5nNH6eTuxlxHJqeyKi4YJFHCoGDBc18E3QTnbJaqIXwzjGILujYOFDOOXtLtZcQA_cC7IKP0dWQW___2IXSm1W3y209aZgG0VQiIKuKDSqXu1JyiGab08bmLwPU_KAzAzpT0ZkDOsOriQ-mUsXtMuS_6H9c36kycdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814911215</pqid></control><display><type>article</type><title>Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dang, Thi Phuc ; Tran, Ngoc Trinh ; To, Van Hau ; Tran Thi, Minh Khoa</creator><creatorcontrib>Dang, Thi Phuc ; Tran, Ngoc Trinh ; To, Van Hau ; Tran Thi, Minh Khoa</creatorcontrib><description>One of significant tasks in autonomous vehicle technology is traffic signs recognizing. It helps to avoid traffic violations on the road. However, recognition of traffic signs becomes more complicated in bad weather such as lack of light, rain, fog. Those bad weather conditions cause low accuracy of detecting and recognizing. In this paper, we aim to build a model to recognize and classify the traffic signs in different bad weather conditions by applying deep learning technique. Weather data are collected from variety types as well as generated from different techniques. Collected data are trained on the YOLOv5s, YOLOv7 model. In order to increase the accuracy, those YOLOv5s are improved on different models by replacing Squeeze-and-Excitation (SE) attention module or Global Context(GC) block. On the test set: the accuracy of YOLOv5s is 76.8%, the accuracy of YOLOv7 is 78% the accuracy of YOLOv5s+SE attention module is 78.4% and the accuracy of YOLOv5s+C3GC is 79.2%. The results show that YOLOv5s+C3GC model significantly improves the accuracy in recognition of blurred-distant-objects.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05097-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Compilers ; Computer Science ; Data collection ; Interpreters ; Meteorological data ; Modules ; Object recognition ; Processor Architectures ; Programming Languages ; Traffic control ; Traffic signs ; Weather</subject><ispartof>The Journal of supercomputing, 2023-07, Vol.79 (10), p.10706-10724</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5f7342f3f01e31a182d9e89fc7a847b4dcc21fce8f9c17ccca608d51fe3d41ab3</citedby><cites>FETCH-LOGICAL-c319t-5f7342f3f01e31a182d9e89fc7a847b4dcc21fce8f9c17ccca608d51fe3d41ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05097-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05097-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dang, Thi Phuc</creatorcontrib><creatorcontrib>Tran, Ngoc Trinh</creatorcontrib><creatorcontrib>To, Van Hau</creatorcontrib><creatorcontrib>Tran Thi, Minh Khoa</creatorcontrib><title>Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>One of significant tasks in autonomous vehicle technology is traffic signs recognizing. It helps to avoid traffic violations on the road. However, recognition of traffic signs becomes more complicated in bad weather such as lack of light, rain, fog. Those bad weather conditions cause low accuracy of detecting and recognizing. In this paper, we aim to build a model to recognize and classify the traffic signs in different bad weather conditions by applying deep learning technique. Weather data are collected from variety types as well as generated from different techniques. Collected data are trained on the YOLOv5s, YOLOv7 model. In order to increase the accuracy, those YOLOv5s are improved on different models by replacing Squeeze-and-Excitation (SE) attention module or Global Context(GC) block. On the test set: the accuracy of YOLOv5s is 76.8%, the accuracy of YOLOv7 is 78% the accuracy of YOLOv5s+SE attention module is 78.4% and the accuracy of YOLOv5s+C3GC is 79.2%. The results show that YOLOv5s+C3GC model significantly improves the accuracy in recognition of blurred-distant-objects.</description><subject>Accuracy</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data collection</subject><subject>Interpreters</subject><subject>Meteorological data</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Traffic control</subject><subject>Traffic signs</subject><subject>Weather</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKt_wFXAdTSTh8ldSvFRKBRBF65CmkdNae-tyW3Ff2_sFdy5GmbmnDPDh9Al0GugVN0UAMYUoYwTKmmjCD9CI5CqtkKLYzSiDaNES8FO0VkpK0qp4IqP0PN0s83dPnj8Np_N9xLHLuMc7Jr0aRNwn22MyeGSlm2pc9ct29SnrsWpxQvr8Wew_XvI2HWtPyzKOTqJdl3CxW8do9eH-5fJE5nNH6eTuxlxHJqeyKi4YJFHCoGDBc18E3QTnbJaqIXwzjGILujYOFDOOXtLtZcQA_cC7IKP0dWQW___2IXSm1W3y209aZgG0VQiIKuKDSqXu1JyiGab08bmLwPU_KAzAzpT0ZkDOsOriQ-mUsXtMuS_6H9c36kycdQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Dang, Thi Phuc</creator><creator>Tran, Ngoc Trinh</creator><creator>To, Van Hau</creator><creator>Tran Thi, Minh Khoa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions</title><author>Dang, Thi Phuc ; Tran, Ngoc Trinh ; To, Van Hau ; Tran Thi, Minh Khoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5f7342f3f01e31a182d9e89fc7a847b4dcc21fce8f9c17ccca608d51fe3d41ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data collection</topic><topic>Interpreters</topic><topic>Meteorological data</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Traffic control</topic><topic>Traffic signs</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Thi Phuc</creatorcontrib><creatorcontrib>Tran, Ngoc Trinh</creatorcontrib><creatorcontrib>To, Van Hau</creatorcontrib><creatorcontrib>Tran Thi, Minh Khoa</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Thi Phuc</au><au>Tran, Ngoc Trinh</au><au>To, Van Hau</au><au>Tran Thi, Minh Khoa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>79</volume><issue>10</issue><spage>10706</spage><epage>10724</epage><pages>10706-10724</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>One of significant tasks in autonomous vehicle technology is traffic signs recognizing. It helps to avoid traffic violations on the road. However, recognition of traffic signs becomes more complicated in bad weather such as lack of light, rain, fog. Those bad weather conditions cause low accuracy of detecting and recognizing. In this paper, we aim to build a model to recognize and classify the traffic signs in different bad weather conditions by applying deep learning technique. Weather data are collected from variety types as well as generated from different techniques. Collected data are trained on the YOLOv5s, YOLOv7 model. In order to increase the accuracy, those YOLOv5s are improved on different models by replacing Squeeze-and-Excitation (SE) attention module or Global Context(GC) block. On the test set: the accuracy of YOLOv5s is 76.8%, the accuracy of YOLOv7 is 78% the accuracy of YOLOv5s+SE attention module is 78.4% and the accuracy of YOLOv5s+C3GC is 79.2%. The results show that YOLOv5s+C3GC model significantly improves the accuracy in recognition of blurred-distant-objects.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05097-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2023-07, Vol.79 (10), p.10706-10724
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2814911215
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Compilers
Computer Science
Data collection
Interpreters
Meteorological data
Modules
Object recognition
Processor Architectures
Programming Languages
Traffic control
Traffic signs
Weather
title Improved YOLOv5 for real-time traffic signs recognition in bad weather conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20YOLOv5%20for%20real-time%20traffic%20signs%20recognition%20in%20bad%20weather%20conditions&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Dang,%20Thi%20Phuc&rft.date=2023-07-01&rft.volume=79&rft.issue=10&rft.spage=10706&rft.epage=10724&rft.pages=10706-10724&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05097-3&rft_dat=%3Cproquest_cross%3E2814911215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814911215&rft_id=info:pmid/&rfr_iscdi=true