Global Operator Calculus on Spin Groups

In this paper, we use the representation theory of the group Spin ( m ) to develop aspects of the global symbolic calculus of pseudo-differential operators on Spin ( 3 ) and Spin ( 4 ) in the sense of Ruzhansky–Turunen–Wirth. A detailed study of Spin ( 3 ) and Spin ( 4 ) -representations is made inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2023-06, Vol.29 (3), Article 32
Hauptverfasser: Cerejeiras, P., Ferreira, M., Kähler, U., Wirth, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 29
creator Cerejeiras, P.
Ferreira, M.
Kähler, U.
Wirth, J.
description In this paper, we use the representation theory of the group Spin ( m ) to develop aspects of the global symbolic calculus of pseudo-differential operators on Spin ( 3 ) and Spin ( 4 ) in the sense of Ruzhansky–Turunen–Wirth. A detailed study of Spin ( 3 ) and Spin ( 4 ) -representations is made including recurrence relations and natural differential operators acting on matrix coefficients. We establish the calculus of left-invariant differential operators and of difference operators on the group Spin ( 4 ) and apply this to give criteria for the subellipticity and the global hypoellipticity of pseudo-differential operators in terms of their matrix-valued full symbols. Several examples of first and second order globally hypoelliptic differential operators are given, including some that are locally neither invertible nor hypoelliptic. The paper presents a particular case study for higher dimensional spin groups.
doi_str_mv 10.1007/s00041-023-10015-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2814910807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749711999</galeid><sourcerecordid>A749711999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-cb57256e26246479b8d339442b888ef1269588411c3d01ca4174614184b1834a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMTCl-PztsaqgIFXqAMyW4zhVqjQOdjLw7zEEiQ3dcB96n7vTi9At4BVgLB8SxphBiQktcw-85GdoAZxCyRWH81xjoXMt9CW6SumIMQEq6QLdb7tQ2a7YDz7aMcRiYzs3dVMqQl-8Dm1fbGOYhnSNLhrbJX_zm5fo_enxbfNc7vbbl816Vzoq9Vi6ikvChSeCMMGkrlRNqWaMVEop3wARmivFABytMTjLQDIBDBSrQFFm6RLdzXuHGD4mn0ZzDFPs80lDFDANWGGZVatZdbCdN23fhDFal6P2p9aF3jdtnq8l0xJAa50BMgMuhpSib8wQ25ONnwaw-XbQzA6a7KD5cdDwDNEZSlncH3z8--Uf6gtEim8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814910807</pqid></control><display><type>article</type><title>Global Operator Calculus on Spin Groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cerejeiras, P. ; Ferreira, M. ; Kähler, U. ; Wirth, J.</creator><creatorcontrib>Cerejeiras, P. ; Ferreira, M. ; Kähler, U. ; Wirth, J.</creatorcontrib><description>In this paper, we use the representation theory of the group Spin ( m ) to develop aspects of the global symbolic calculus of pseudo-differential operators on Spin ( 3 ) and Spin ( 4 ) in the sense of Ruzhansky–Turunen–Wirth. A detailed study of Spin ( 3 ) and Spin ( 4 ) -representations is made including recurrence relations and natural differential operators acting on matrix coefficients. We establish the calculus of left-invariant differential operators and of difference operators on the group Spin ( 4 ) and apply this to give criteria for the subellipticity and the global hypoellipticity of pseudo-differential operators in terms of their matrix-valued full symbols. Several examples of first and second order globally hypoelliptic differential operators are given, including some that are locally neither invertible nor hypoelliptic. The paper presents a particular case study for higher dimensional spin groups.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-023-10015-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Calculus ; Differential calculus ; Differential equations ; Finite differences ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2023-06, Vol.29 (3), Article 32</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c379t-cb57256e26246479b8d339442b888ef1269588411c3d01ca4174614184b1834a3</cites><orcidid>0000-0003-1816-8293 ; 0000-0001-7667-4595 ; 0000-0002-3950-4236 ; 0000-0002-9066-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-023-10015-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-023-10015-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cerejeiras, P.</creatorcontrib><creatorcontrib>Ferreira, M.</creatorcontrib><creatorcontrib>Kähler, U.</creatorcontrib><creatorcontrib>Wirth, J.</creatorcontrib><title>Global Operator Calculus on Spin Groups</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper, we use the representation theory of the group Spin ( m ) to develop aspects of the global symbolic calculus of pseudo-differential operators on Spin ( 3 ) and Spin ( 4 ) in the sense of Ruzhansky–Turunen–Wirth. A detailed study of Spin ( 3 ) and Spin ( 4 ) -representations is made including recurrence relations and natural differential operators acting on matrix coefficients. We establish the calculus of left-invariant differential operators and of difference operators on the group Spin ( 4 ) and apply this to give criteria for the subellipticity and the global hypoellipticity of pseudo-differential operators in terms of their matrix-valued full symbols. Several examples of first and second order globally hypoelliptic differential operators are given, including some that are locally neither invertible nor hypoelliptic. The paper presents a particular case study for higher dimensional spin groups.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Calculus</subject><subject>Differential calculus</subject><subject>Differential equations</subject><subject>Finite differences</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMTCl-PztsaqgIFXqAMyW4zhVqjQOdjLw7zEEiQ3dcB96n7vTi9At4BVgLB8SxphBiQktcw-85GdoAZxCyRWH81xjoXMt9CW6SumIMQEq6QLdb7tQ2a7YDz7aMcRiYzs3dVMqQl-8Dm1fbGOYhnSNLhrbJX_zm5fo_enxbfNc7vbbl816Vzoq9Vi6ikvChSeCMMGkrlRNqWaMVEop3wARmivFABytMTjLQDIBDBSrQFFm6RLdzXuHGD4mn0ZzDFPs80lDFDANWGGZVatZdbCdN23fhDFal6P2p9aF3jdtnq8l0xJAa50BMgMuhpSib8wQ25ONnwaw-XbQzA6a7KD5cdDwDNEZSlncH3z8--Uf6gtEim8H</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Cerejeiras, P.</creator><creator>Ferreira, M.</creator><creator>Kähler, U.</creator><creator>Wirth, J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1816-8293</orcidid><orcidid>https://orcid.org/0000-0001-7667-4595</orcidid><orcidid>https://orcid.org/0000-0002-3950-4236</orcidid><orcidid>https://orcid.org/0000-0002-9066-1819</orcidid></search><sort><creationdate>20230601</creationdate><title>Global Operator Calculus on Spin Groups</title><author>Cerejeiras, P. ; Ferreira, M. ; Kähler, U. ; Wirth, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-cb57256e26246479b8d339442b888ef1269588411c3d01ca4174614184b1834a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Calculus</topic><topic>Differential calculus</topic><topic>Differential equations</topic><topic>Finite differences</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerejeiras, P.</creatorcontrib><creatorcontrib>Ferreira, M.</creatorcontrib><creatorcontrib>Kähler, U.</creatorcontrib><creatorcontrib>Wirth, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerejeiras, P.</au><au>Ferreira, M.</au><au>Kähler, U.</au><au>Wirth, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Operator Calculus on Spin Groups</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><artnum>32</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper, we use the representation theory of the group Spin ( m ) to develop aspects of the global symbolic calculus of pseudo-differential operators on Spin ( 3 ) and Spin ( 4 ) in the sense of Ruzhansky–Turunen–Wirth. A detailed study of Spin ( 3 ) and Spin ( 4 ) -representations is made including recurrence relations and natural differential operators acting on matrix coefficients. We establish the calculus of left-invariant differential operators and of difference operators on the group Spin ( 4 ) and apply this to give criteria for the subellipticity and the global hypoellipticity of pseudo-differential operators in terms of their matrix-valued full symbols. Several examples of first and second order globally hypoelliptic differential operators are given, including some that are locally neither invertible nor hypoelliptic. The paper presents a particular case study for higher dimensional spin groups.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-023-10015-5</doi><orcidid>https://orcid.org/0000-0003-1816-8293</orcidid><orcidid>https://orcid.org/0000-0001-7667-4595</orcidid><orcidid>https://orcid.org/0000-0002-3950-4236</orcidid><orcidid>https://orcid.org/0000-0002-9066-1819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2023-06, Vol.29 (3), Article 32
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2814910807
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Approximations and Expansions
Calculus
Differential calculus
Differential equations
Finite differences
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial Differential Equations
Signal,Image and Speech Processing
title Global Operator Calculus on Spin Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Operator%20Calculus%20on%20Spin%20Groups&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Cerejeiras,%20P.&rft.date=2023-06-01&rft.volume=29&rft.issue=3&rft.artnum=32&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-023-10015-5&rft_dat=%3Cgale_proqu%3EA749711999%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814910807&rft_id=info:pmid/&rft_galeid=A749711999&rfr_iscdi=true