The Almost Sure Essential Spectrum of the Doubling Map Model is Connected
We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman h...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2023-06, Vol.400 (2), p.793-804 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 804 |
---|---|
container_issue | 2 |
container_start_page | 793 |
container_title | Communications in mathematical physics |
container_volume | 400 |
creator | Damanik, David Fillman, Jake |
description | We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum. |
doi_str_mv | 10.1007/s00220-022-04607-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814910693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814910693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-LYx6qUh9SKQ8vZchynpErjYCcH_j0uQeLGZVYrfTOrHYRuCdwTgOIhAlAKWZIMuIAiY2doRjhLqyLiHM0ACGRMEHGJrmI8AICiQszQ6-7D4UV79HHA2zE4vIrRdUNjWrztnR3CeMS-xkOiHv1Ytk23xxvT442vXIubiJe-6xLnqmt0UZs2upvfOUfvT6vd8iVbvz2_LhfrzDKihowboZQUvMi5rXLOXc1UzQyFXEJFJCM0tzz9VJWUF1ZKY0jBOJFlaUldOsvm6G7K7YP_HF0c9MGPoUsnNZWEKwJCsUTRibLBxxhcrfvQHE340gT0qTI9VaaT6J_K9MnEJlNMcLd34S_6H9c3eqRsXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814910693</pqid></control><display><type>article</type><title>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</title><source>SpringerNature Journals</source><creator>Damanik, David ; Fillman, Jake</creator><creatorcontrib>Damanik, David ; Fillman, Jake</creatorcontrib><description>We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04607-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Continuity (mathematics) ; Homomorphisms ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Solenoids ; Subgroups ; Theoretical</subject><ispartof>Communications in mathematical physics, 2023-06, Vol.400 (2), p.793-804</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</citedby><cites>FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</cites><orcidid>0000-0003-4716-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04607-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04607-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Damanik, David</creatorcontrib><creatorcontrib>Fillman, Jake</creatorcontrib><title>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Continuity (mathematics)</subject><subject>Homomorphisms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Solenoids</subject><subject>Subgroups</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-LYx6qUh9SKQ8vZchynpErjYCcH_j0uQeLGZVYrfTOrHYRuCdwTgOIhAlAKWZIMuIAiY2doRjhLqyLiHM0ACGRMEHGJrmI8AICiQszQ6-7D4UV79HHA2zE4vIrRdUNjWrztnR3CeMS-xkOiHv1Ytk23xxvT442vXIubiJe-6xLnqmt0UZs2upvfOUfvT6vd8iVbvz2_LhfrzDKihowboZQUvMi5rXLOXc1UzQyFXEJFJCM0tzz9VJWUF1ZKY0jBOJFlaUldOsvm6G7K7YP_HF0c9MGPoUsnNZWEKwJCsUTRibLBxxhcrfvQHE340gT0qTI9VaaT6J_K9MnEJlNMcLd34S_6H9c3eqRsXw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Damanik, David</creator><creator>Fillman, Jake</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4716-710X</orcidid></search><sort><creationdate>20230601</creationdate><title>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</title><author>Damanik, David ; Fillman, Jake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Continuity (mathematics)</topic><topic>Homomorphisms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Solenoids</topic><topic>Subgroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damanik, David</creatorcontrib><creatorcontrib>Fillman, Jake</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damanik, David</au><au>Fillman, Jake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>400</volume><issue>2</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04607-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4716-710X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2023-06, Vol.400 (2), p.793-804 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2814910693 |
source | SpringerNature Journals |
subjects | Classical and Quantum Gravitation Complex Systems Continuity (mathematics) Homomorphisms Mathematical and Computational Physics Mathematical Physics Operators (mathematics) Physics Physics and Astronomy Quantum Physics Relativity Theory Solenoids Subgroups Theoretical |
title | The Almost Sure Essential Spectrum of the Doubling Map Model is Connected |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Almost%20Sure%20Essential%20Spectrum%20of%20the%20Doubling%20Map%20Model%20is%20Connected&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Damanik,%20David&rft.date=2023-06-01&rft.volume=400&rft.issue=2&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04607-3&rft_dat=%3Cproquest_cross%3E2814910693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814910693&rft_id=info:pmid/&rfr_iscdi=true |