The Almost Sure Essential Spectrum of the Doubling Map Model is Connected

We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-06, Vol.400 (2), p.793-804
Hauptverfasser: Damanik, David, Fillman, Jake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 804
container_issue 2
container_start_page 793
container_title Communications in mathematical physics
container_volume 400
creator Damanik, David
Fillman, Jake
description We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.
doi_str_mv 10.1007/s00220-022-04607-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814910693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814910693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-LYx6qUh9SKQ8vZchynpErjYCcH_j0uQeLGZVYrfTOrHYRuCdwTgOIhAlAKWZIMuIAiY2doRjhLqyLiHM0ACGRMEHGJrmI8AICiQszQ6-7D4UV79HHA2zE4vIrRdUNjWrztnR3CeMS-xkOiHv1Ytk23xxvT442vXIubiJe-6xLnqmt0UZs2upvfOUfvT6vd8iVbvz2_LhfrzDKihowboZQUvMi5rXLOXc1UzQyFXEJFJCM0tzz9VJWUF1ZKY0jBOJFlaUldOsvm6G7K7YP_HF0c9MGPoUsnNZWEKwJCsUTRibLBxxhcrfvQHE340gT0qTI9VaaT6J_K9MnEJlNMcLd34S_6H9c3eqRsXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814910693</pqid></control><display><type>article</type><title>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</title><source>SpringerNature Journals</source><creator>Damanik, David ; Fillman, Jake</creator><creatorcontrib>Damanik, David ; Fillman, Jake</creatorcontrib><description>We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04607-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Continuity (mathematics) ; Homomorphisms ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Solenoids ; Subgroups ; Theoretical</subject><ispartof>Communications in mathematical physics, 2023-06, Vol.400 (2), p.793-804</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</citedby><cites>FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</cites><orcidid>0000-0003-4716-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04607-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04607-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Damanik, David</creatorcontrib><creatorcontrib>Fillman, Jake</creatorcontrib><title>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Continuity (mathematics)</subject><subject>Homomorphisms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Solenoids</subject><subject>Subgroups</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-LYx6qUh9SKQ8vZchynpErjYCcH_j0uQeLGZVYrfTOrHYRuCdwTgOIhAlAKWZIMuIAiY2doRjhLqyLiHM0ACGRMEHGJrmI8AICiQszQ6-7D4UV79HHA2zE4vIrRdUNjWrztnR3CeMS-xkOiHv1Ytk23xxvT442vXIubiJe-6xLnqmt0UZs2upvfOUfvT6vd8iVbvz2_LhfrzDKihowboZQUvMi5rXLOXc1UzQyFXEJFJCM0tzz9VJWUF1ZKY0jBOJFlaUldOsvm6G7K7YP_HF0c9MGPoUsnNZWEKwJCsUTRibLBxxhcrfvQHE340gT0qTI9VaaT6J_K9MnEJlNMcLd34S_6H9c3eqRsXw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Damanik, David</creator><creator>Fillman, Jake</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4716-710X</orcidid></search><sort><creationdate>20230601</creationdate><title>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</title><author>Damanik, David ; Fillman, Jake</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a699864754cd544ef39f3a20580d183125c4100db247c88aa173418bbc1fbec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Continuity (mathematics)</topic><topic>Homomorphisms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Solenoids</topic><topic>Subgroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damanik, David</creatorcontrib><creatorcontrib>Fillman, Jake</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damanik, David</au><au>Fillman, Jake</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Almost Sure Essential Spectrum of the Doubling Map Model is Connected</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>400</volume><issue>2</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We consider discrete Schrödinger operators on the half line with potentials generated by the doubling map and continuous sampling functions. We show that the essential spectrum of these operators is always connected. This result is obtained by computing the subgroup of the range of the Schwartzman homomorphism associated with homotopy classes of continuous maps on the suspension of the standard solenoid that factor through the suspension of the doubling map and then showing that this subgroup characterizes the topological structure of the spectrum.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04607-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4716-710X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2023-06, Vol.400 (2), p.793-804
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2814910693
source SpringerNature Journals
subjects Classical and Quantum Gravitation
Complex Systems
Continuity (mathematics)
Homomorphisms
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Solenoids
Subgroups
Theoretical
title The Almost Sure Essential Spectrum of the Doubling Map Model is Connected
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Almost%20Sure%20Essential%20Spectrum%20of%20the%20Doubling%20Map%20Model%20is%20Connected&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Damanik,%20David&rft.date=2023-06-01&rft.volume=400&rft.issue=2&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04607-3&rft_dat=%3Cproquest_cross%3E2814910693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814910693&rft_id=info:pmid/&rfr_iscdi=true