On the Number of Maximal Antichains in Boolean Lattices for up to 7

We consider two ways how to compute the number of maximal antichains in the Boolean lattice on elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023, Vol.44 (1), p.137-146
1. Verfasser: Ignatov, D. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 137
container_title Lobachevskii journal of mathematics
container_volume 44
creator Ignatov, D. I.
description We consider two ways how to compute the number of maximal antichains in the Boolean lattice on elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences: https://oeis.org/A326359 , https://oeis.org/A326360 , and https://oeis.org/A348260 . These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice or monotone Boolean functions over variables.
doi_str_mv 10.1134/S1995080223010158
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2814910623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814910623</sourcerecordid><originalsourceid>FETCH-LOGICAL-p718-e16fcd9876a4fdc2707aed933d2d6275dd676de981406088b9eb0178e904717c3</originalsourceid><addsrcrecordid>eNplkE9PwzAMxSMEEmPwAbhF4lywkzZ_jmOCgVTYgd2rtElZpy0pTSvx8ck0JA6cbPn97Gc9Qm4R7hF5_vCBWheggDEOCFioMzJDhSrTWrDz1Cc5O-qX5CrGHSRQCDEjy7Wn49bR9-lQu4GGlr6Z7-5g9nThx67Zms5H2nn6GMLeGU9LM6axi7QNA516OgYqr8lFa_bR3fzWOdk8P22WL1m5Xr0uF2XWy_SIQ9E2VispTN7ahkmQxlnNuWVWMFlYK6SwTivMQYBStXY1oFROQy5RNnxO7k5n-yF8TS6O1S5Mg0-OFUtLGkEwnih2omI_dP7TDX8UQnXMqvqXFf8B_OhZYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814910623</pqid></control><display><type>article</type><title>On the Number of Maximal Antichains in Boolean Lattices for up to 7</title><source>SpringerNature Journals</source><creator>Ignatov, D. I.</creator><creatorcontrib>Ignatov, D. I.</creatorcontrib><description>We consider two ways how to compute the number of maximal antichains in the Boolean lattice on elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences: https://oeis.org/A326359 , https://oeis.org/A326360 , and https://oeis.org/A348260 . These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice or monotone Boolean functions over variables.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223010158</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Boolean ; Boolean functions ; Encyclopedias ; Enumeration ; Geometry ; Lattice theory ; Lattices ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.137-146</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p718-e16fcd9876a4fdc2707aed933d2d6275dd676de981406088b9eb0178e904717c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223010158$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223010158$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ignatov, D. I.</creatorcontrib><title>On the Number of Maximal Antichains in Boolean Lattices for up to 7</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider two ways how to compute the number of maximal antichains in the Boolean lattice on elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences: https://oeis.org/A326359 , https://oeis.org/A326360 , and https://oeis.org/A348260 . These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice or monotone Boolean functions over variables.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Boolean</subject><subject>Boolean functions</subject><subject>Encyclopedias</subject><subject>Enumeration</subject><subject>Geometry</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkE9PwzAMxSMEEmPwAbhF4lywkzZ_jmOCgVTYgd2rtElZpy0pTSvx8ck0JA6cbPn97Gc9Qm4R7hF5_vCBWheggDEOCFioMzJDhSrTWrDz1Cc5O-qX5CrGHSRQCDEjy7Wn49bR9-lQu4GGlr6Z7-5g9nThx67Zms5H2nn6GMLeGU9LM6axi7QNA516OgYqr8lFa_bR3fzWOdk8P22WL1m5Xr0uF2XWy_SIQ9E2VispTN7ahkmQxlnNuWVWMFlYK6SwTivMQYBStXY1oFROQy5RNnxO7k5n-yF8TS6O1S5Mg0-OFUtLGkEwnih2omI_dP7TDX8UQnXMqvqXFf8B_OhZYQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ignatov, D. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>On the Number of Maximal Antichains in Boolean Lattices for up to 7</title><author>Ignatov, D. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p718-e16fcd9876a4fdc2707aed933d2d6275dd676de981406088b9eb0178e904717c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Boolean</topic><topic>Boolean functions</topic><topic>Encyclopedias</topic><topic>Enumeration</topic><topic>Geometry</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatov, D. I.</creatorcontrib><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatov, D. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Maximal Antichains in Boolean Lattices for up to 7</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider two ways how to compute the number of maximal antichains in the Boolean lattice on elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences: https://oeis.org/A326359 , https://oeis.org/A326360 , and https://oeis.org/A348260 . These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice or monotone Boolean functions over variables.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223010158</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.137-146
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2814910623
source SpringerNature Journals
subjects Algebra
Algorithms
Analysis
Boolean
Boolean functions
Encyclopedias
Enumeration
Geometry
Lattice theory
Lattices
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title On the Number of Maximal Antichains in Boolean Lattices for up to 7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Number%20of%20Maximal%20Antichains%20in%20Boolean%20Lattices%20for%20up%20to%207&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Ignatov,%20D.%20I.&rft.date=2023&rft.volume=44&rft.issue=1&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223010158&rft_dat=%3Cproquest_sprin%3E2814910623%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814910623&rft_id=info:pmid/&rfr_iscdi=true