On the Number of Maximal Antichains in Boolean Lattices for up to 7
We consider two ways how to compute the number of maximal antichains in the Boolean lattice on elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) an...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2023, Vol.44 (1), p.137-146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | Lobachevskii journal of mathematics |
container_volume | 44 |
creator | Ignatov, D. I. |
description | We consider two ways how to compute the number of maximal antichains in the Boolean lattice on
elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences:
https://oeis.org/A326359
,
https://oeis.org/A326360
, and
https://oeis.org/A348260
. These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice
or monotone Boolean functions over
variables. |
doi_str_mv | 10.1134/S1995080223010158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2814910623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814910623</sourcerecordid><originalsourceid>FETCH-LOGICAL-p718-e16fcd9876a4fdc2707aed933d2d6275dd676de981406088b9eb0178e904717c3</originalsourceid><addsrcrecordid>eNplkE9PwzAMxSMEEmPwAbhF4lywkzZ_jmOCgVTYgd2rtElZpy0pTSvx8ck0JA6cbPn97Gc9Qm4R7hF5_vCBWheggDEOCFioMzJDhSrTWrDz1Cc5O-qX5CrGHSRQCDEjy7Wn49bR9-lQu4GGlr6Z7-5g9nThx67Zms5H2nn6GMLeGU9LM6axi7QNA516OgYqr8lFa_bR3fzWOdk8P22WL1m5Xr0uF2XWy_SIQ9E2VispTN7ahkmQxlnNuWVWMFlYK6SwTivMQYBStXY1oFROQy5RNnxO7k5n-yF8TS6O1S5Mg0-OFUtLGkEwnih2omI_dP7TDX8UQnXMqvqXFf8B_OhZYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814910623</pqid></control><display><type>article</type><title>On the Number of Maximal Antichains in Boolean Lattices for up to 7</title><source>SpringerNature Journals</source><creator>Ignatov, D. I.</creator><creatorcontrib>Ignatov, D. I.</creatorcontrib><description>We consider two ways how to compute the number of maximal antichains in the Boolean lattice on
elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences:
https://oeis.org/A326359
,
https://oeis.org/A326360
, and
https://oeis.org/A348260
. These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice
or monotone Boolean functions over
variables.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223010158</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Boolean ; Boolean functions ; Encyclopedias ; Enumeration ; Geometry ; Lattice theory ; Lattices ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.137-146</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p718-e16fcd9876a4fdc2707aed933d2d6275dd676de981406088b9eb0178e904717c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223010158$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223010158$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ignatov, D. I.</creatorcontrib><title>On the Number of Maximal Antichains in Boolean Lattices for up to 7</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider two ways how to compute the number of maximal antichains in the Boolean lattice on
elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences:
https://oeis.org/A326359
,
https://oeis.org/A326360
, and
https://oeis.org/A348260
. These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice
or monotone Boolean functions over
variables.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Boolean</subject><subject>Boolean functions</subject><subject>Encyclopedias</subject><subject>Enumeration</subject><subject>Geometry</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkE9PwzAMxSMEEmPwAbhF4lywkzZ_jmOCgVTYgd2rtElZpy0pTSvx8ck0JA6cbPn97Gc9Qm4R7hF5_vCBWheggDEOCFioMzJDhSrTWrDz1Cc5O-qX5CrGHSRQCDEjy7Wn49bR9-lQu4GGlr6Z7-5g9nThx67Zms5H2nn6GMLeGU9LM6axi7QNA516OgYqr8lFa_bR3fzWOdk8P22WL1m5Xr0uF2XWy_SIQ9E2VispTN7ahkmQxlnNuWVWMFlYK6SwTivMQYBStXY1oFROQy5RNnxO7k5n-yF8TS6O1S5Mg0-OFUtLGkEwnih2omI_dP7TDX8UQnXMqvqXFf8B_OhZYQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ignatov, D. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>On the Number of Maximal Antichains in Boolean Lattices for up to 7</title><author>Ignatov, D. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p718-e16fcd9876a4fdc2707aed933d2d6275dd676de981406088b9eb0178e904717c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Boolean</topic><topic>Boolean functions</topic><topic>Encyclopedias</topic><topic>Enumeration</topic><topic>Geometry</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatov, D. I.</creatorcontrib><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatov, D. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Maximal Antichains in Boolean Lattices for up to 7</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider two ways how to compute the number of maximal antichains in the Boolean lattice on
elements. The first one is based on full direct enumeration, while the second ones relies on concept lattices or Galois lattices (studied in Formal Concept Analysis, an applied branch of lattice theory) and the Dedekind–McNeil completion of a partial order. The last technique also results in the so-called standard contexts of a (concept) lattice, which gives an alternative representation of maximal antichain lattices as binary relations on meet- and join-irreducible elements. The implemented algorithms are parallelised and openly available on the author’s GitHub page https://github.com/dimachine/NonEquivMACs. All the computational results obtained by the author are listed in their records in the On-Line Encyclopedia of Integer Sequences:
https://oeis.org/A326359
,
https://oeis.org/A326360
, and
https://oeis.org/A348260
. These sequences have their famous counterparts known under the name Dedekind numbers, representing the number of antichains of the Boolean lattice
or monotone Boolean functions over
variables.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223010158</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2023, Vol.44 (1), p.137-146 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2814910623 |
source | SpringerNature Journals |
subjects | Algebra Algorithms Analysis Boolean Boolean functions Encyclopedias Enumeration Geometry Lattice theory Lattices Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | On the Number of Maximal Antichains in Boolean Lattices for up to 7 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Number%20of%20Maximal%20Antichains%20in%20Boolean%20Lattices%20for%20up%20to%207&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Ignatov,%20D.%20I.&rft.date=2023&rft.volume=44&rft.issue=1&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223010158&rft_dat=%3Cproquest_sprin%3E2814910623%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814910623&rft_id=info:pmid/&rfr_iscdi=true |