Parallel implementations of randomized vector algorithm for solving large systems of linear equations
The results of a parallel implementation of a randomized vector algorithm for solving systems of linear equations are presented in the paper. The solution is represented in the form of a Neumann series. The stochastic method computes this series by sampling only random columns, avoiding multiplicati...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2023-07, Vol.79 (10), p.10555-10569 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10569 |
---|---|
container_issue | 10 |
container_start_page | 10555 |
container_title | The Journal of supercomputing |
container_volume | 79 |
creator | Sabelfeld, Karl K. Kireev, Sergey Kireeva, Anastasiya |
description | The results of a parallel implementation of a randomized vector algorithm for solving systems of linear equations are presented in the paper. The solution is represented in the form of a Neumann series. The stochastic method computes this series by sampling only random columns, avoiding multiplication of matrix by matrix and matrix by vector. We consider the case when the matrix is too large to fit in random-access memory (RAM). We use two approaches to solve this problem. In the first approach, the matrix is divided into parts that are distributed among MPI processes and stored in the available RAM of the cluster nodes. In the second approach, the entire matrix is stored on each node’s hard drive, loaded into RAM, and processed in parts. Independent Monte Carlo experiments for random column indices are distributed among MPI processes or OpenMP threads for both approaches to matrix storage. The efficiency of parallel implementations is analyzed. Results are given for a system governed by dense matrices of size
10
4
and
10
5
. |
doi_str_mv | 10.1007/s11227-023-05079-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814910084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814910084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-54bc88425b1e455c773722f07fb5a84c95217af738b08d6ebae3e7b058e2704d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gKsB19E7r85kKcUXFHSh62GS3MSUSaadSQv11xsbwZ2ry4HznQsfIdcMbhmAvkuMca4z4CIDBTrP1AmZMaXHKI08JTPIOWRGSX5OLlJaA4AUWswIvrnovEdP227jscN-cEMb-kRDTaPrq9C1X1jRPZZDiNT5JsR2-OxoPaYU_L7tG-pdbJCmQxqwO4K-7dFFitvdNHZJzmrnE1793jn5eHx4Xz5nq9enl-X9KivFQgyZkkVpjOSqYCiVKrUWmvMadF0oZ2SZK860q7UwBZhqgYVDgboAZZBrkJWYk5tpdxPDdodpsOuwi_340nLDZD66MnJs8alVxpBSxNpuYtu5eLAM7I9OO-m0o0571GnVCIkJSmO5bzD-Tf9DfQOgYXmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814910084</pqid></control><display><type>article</type><title>Parallel implementations of randomized vector algorithm for solving large systems of linear equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Sabelfeld, Karl K. ; Kireev, Sergey ; Kireeva, Anastasiya</creator><creatorcontrib>Sabelfeld, Karl K. ; Kireev, Sergey ; Kireeva, Anastasiya</creatorcontrib><description>The results of a parallel implementation of a randomized vector algorithm for solving systems of linear equations are presented in the paper. The solution is represented in the form of a Neumann series. The stochastic method computes this series by sampling only random columns, avoiding multiplication of matrix by matrix and matrix by vector. We consider the case when the matrix is too large to fit in random-access memory (RAM). We use two approaches to solve this problem. In the first approach, the matrix is divided into parts that are distributed among MPI processes and stored in the available RAM of the cluster nodes. In the second approach, the entire matrix is stored on each node’s hard drive, loaded into RAM, and processed in parts. Independent Monte Carlo experiments for random column indices are distributed among MPI processes or OpenMP threads for both approaches to matrix storage. The efficiency of parallel implementations is analyzed. Results are given for a system governed by dense matrices of size
10
4
and
10
5
.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05079-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Interpreters ; Linear equations ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Processor Architectures ; Programming Languages ; Random access memory</subject><ispartof>The Journal of supercomputing, 2023-07, Vol.79 (10), p.10555-10569</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-54bc88425b1e455c773722f07fb5a84c95217af738b08d6ebae3e7b058e2704d3</citedby><cites>FETCH-LOGICAL-c363t-54bc88425b1e455c773722f07fb5a84c95217af738b08d6ebae3e7b058e2704d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05079-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05079-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sabelfeld, Karl K.</creatorcontrib><creatorcontrib>Kireev, Sergey</creatorcontrib><creatorcontrib>Kireeva, Anastasiya</creatorcontrib><title>Parallel implementations of randomized vector algorithm for solving large systems of linear equations</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The results of a parallel implementation of a randomized vector algorithm for solving systems of linear equations are presented in the paper. The solution is represented in the form of a Neumann series. The stochastic method computes this series by sampling only random columns, avoiding multiplication of matrix by matrix and matrix by vector. We consider the case when the matrix is too large to fit in random-access memory (RAM). We use two approaches to solve this problem. In the first approach, the matrix is divided into parts that are distributed among MPI processes and stored in the available RAM of the cluster nodes. In the second approach, the entire matrix is stored on each node’s hard drive, loaded into RAM, and processed in parts. Independent Monte Carlo experiments for random column indices are distributed among MPI processes or OpenMP threads for both approaches to matrix storage. The efficiency of parallel implementations is analyzed. Results are given for a system governed by dense matrices of size
10
4
and
10
5
.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Random access memory</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gKsB19E7r85kKcUXFHSh62GS3MSUSaadSQv11xsbwZ2ry4HznQsfIdcMbhmAvkuMca4z4CIDBTrP1AmZMaXHKI08JTPIOWRGSX5OLlJaA4AUWswIvrnovEdP227jscN-cEMb-kRDTaPrq9C1X1jRPZZDiNT5JsR2-OxoPaYU_L7tG-pdbJCmQxqwO4K-7dFFitvdNHZJzmrnE1793jn5eHx4Xz5nq9enl-X9KivFQgyZkkVpjOSqYCiVKrUWmvMadF0oZ2SZK860q7UwBZhqgYVDgboAZZBrkJWYk5tpdxPDdodpsOuwi_340nLDZD66MnJs8alVxpBSxNpuYtu5eLAM7I9OO-m0o0571GnVCIkJSmO5bzD-Tf9DfQOgYXmY</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Sabelfeld, Karl K.</creator><creator>Kireev, Sergey</creator><creator>Kireeva, Anastasiya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Parallel implementations of randomized vector algorithm for solving large systems of linear equations</title><author>Sabelfeld, Karl K. ; Kireev, Sergey ; Kireeva, Anastasiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-54bc88425b1e455c773722f07fb5a84c95217af738b08d6ebae3e7b058e2704d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Random access memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabelfeld, Karl K.</creatorcontrib><creatorcontrib>Kireev, Sergey</creatorcontrib><creatorcontrib>Kireeva, Anastasiya</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabelfeld, Karl K.</au><au>Kireev, Sergey</au><au>Kireeva, Anastasiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel implementations of randomized vector algorithm for solving large systems of linear equations</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>79</volume><issue>10</issue><spage>10555</spage><epage>10569</epage><pages>10555-10569</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The results of a parallel implementation of a randomized vector algorithm for solving systems of linear equations are presented in the paper. The solution is represented in the form of a Neumann series. The stochastic method computes this series by sampling only random columns, avoiding multiplication of matrix by matrix and matrix by vector. We consider the case when the matrix is too large to fit in random-access memory (RAM). We use two approaches to solve this problem. In the first approach, the matrix is divided into parts that are distributed among MPI processes and stored in the available RAM of the cluster nodes. In the second approach, the entire matrix is stored on each node’s hard drive, loaded into RAM, and processed in parts. Independent Monte Carlo experiments for random column indices are distributed among MPI processes or OpenMP threads for both approaches to matrix storage. The efficiency of parallel implementations is analyzed. Results are given for a system governed by dense matrices of size
10
4
and
10
5
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05079-5</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2023-07, Vol.79 (10), p.10555-10569 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2814910084 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Compilers Computer Science Interpreters Linear equations Mathematical analysis Matrices (mathematics) Matrix algebra Processor Architectures Programming Languages Random access memory |
title | Parallel implementations of randomized vector algorithm for solving large systems of linear equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20implementations%20of%20randomized%20vector%20algorithm%20for%20solving%20large%20systems%20of%20linear%20equations&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Sabelfeld,%20Karl%20K.&rft.date=2023-07-01&rft.volume=79&rft.issue=10&rft.spage=10555&rft.epage=10569&rft.pages=10555-10569&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05079-5&rft_dat=%3Cproquest_cross%3E2814910084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814910084&rft_id=info:pmid/&rfr_iscdi=true |