Using SAT to study plane Hamiltonian substructures in simple drawings

In 1988 Rafla conjectured that every simple drawing of a complete graph \(K_n\) contains a plane, i.e., non-crossing, Hamiltonian cycle. The conjecture is far from being resolved. The lower bounds for plane paths and plane matchings have recently been raised to \((\log n)^{1-o(1)}\) and \(\Omega(\sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Bergold, Helena, Felsner, Stefan, Reddy, Meghana M, Scheucher, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bergold, Helena
Felsner, Stefan
Reddy, Meghana M
Scheucher, Manfred
description In 1988 Rafla conjectured that every simple drawing of a complete graph \(K_n\) contains a plane, i.e., non-crossing, Hamiltonian cycle. The conjecture is far from being resolved. The lower bounds for plane paths and plane matchings have recently been raised to \((\log n)^{1-o(1)}\) and \(\Omega(\sqrt{n})\), respectively. We develop a SAT framework which allows the study of simple drawings of \(K_n\). Based on the computational data we conjecture that every simple drawing of \(K_n\) contains a plane Hamiltonian subgraph with \(2n-3\) edges. We prove this strengthening of Rafla's conjecture for convex drawings, a rich subclass of simple drawings. Our computer experiments also led to other new challenging conjectures regarding plane substructures in simple drawings of complete graphs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2814624256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814624256</sourcerecordid><originalsourceid>FETCH-proquest_journals_28146242563</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_sOC50G7S2qtIpXfruUQbJSVNajZB_Ht78AM8PZiZt2IJcl5ktUDcsJRozPMcqwOWJU9YcyVtn3A5dhAcUIjDB2YjrYJWTtoEZ7W0QPFGwcd7iF4R6AXoaTYKBi_fy512bP2QhlT62y3bn5vu1Gazd6-oKPSji94uqse6EBUKLCv-X_UFjX87Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814624256</pqid></control><display><type>article</type><title>Using SAT to study plane Hamiltonian substructures in simple drawings</title><source>Free E- Journals</source><creator>Bergold, Helena ; Felsner, Stefan ; Reddy, Meghana M ; Scheucher, Manfred</creator><creatorcontrib>Bergold, Helena ; Felsner, Stefan ; Reddy, Meghana M ; Scheucher, Manfred</creatorcontrib><description>In 1988 Rafla conjectured that every simple drawing of a complete graph \(K_n\) contains a plane, i.e., non-crossing, Hamiltonian cycle. The conjecture is far from being resolved. The lower bounds for plane paths and plane matchings have recently been raised to \((\log n)^{1-o(1)}\) and \(\Omega(\sqrt{n})\), respectively. We develop a SAT framework which allows the study of simple drawings of \(K_n\). Based on the computational data we conjecture that every simple drawing of \(K_n\) contains a plane Hamiltonian subgraph with \(2n-3\) edges. We prove this strengthening of Rafla's conjecture for convex drawings, a rich subclass of simple drawings. Our computer experiments also led to other new challenging conjectures regarding plane substructures in simple drawings of complete graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph theory ; Lower bounds</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bergold, Helena</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><creatorcontrib>Reddy, Meghana M</creatorcontrib><creatorcontrib>Scheucher, Manfred</creatorcontrib><title>Using SAT to study plane Hamiltonian substructures in simple drawings</title><title>arXiv.org</title><description>In 1988 Rafla conjectured that every simple drawing of a complete graph \(K_n\) contains a plane, i.e., non-crossing, Hamiltonian cycle. The conjecture is far from being resolved. The lower bounds for plane paths and plane matchings have recently been raised to \((\log n)^{1-o(1)}\) and \(\Omega(\sqrt{n})\), respectively. We develop a SAT framework which allows the study of simple drawings of \(K_n\). Based on the computational data we conjecture that every simple drawing of \(K_n\) contains a plane Hamiltonian subgraph with \(2n-3\) edges. We prove this strengthening of Rafla's conjecture for convex drawings, a rich subclass of simple drawings. Our computer experiments also led to other new challenging conjectures regarding plane substructures in simple drawings of complete graphs.</description><subject>Graph theory</subject><subject>Lower bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_sOC50G7S2qtIpXfruUQbJSVNajZB_Ht78AM8PZiZt2IJcl5ktUDcsJRozPMcqwOWJU9YcyVtn3A5dhAcUIjDB2YjrYJWTtoEZ7W0QPFGwcd7iF4R6AXoaTYKBi_fy512bP2QhlT62y3bn5vu1Gazd6-oKPSji94uqse6EBUKLCv-X_UFjX87Ng</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Bergold, Helena</creator><creator>Felsner, Stefan</creator><creator>Reddy, Meghana M</creator><creator>Scheucher, Manfred</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230516</creationdate><title>Using SAT to study plane Hamiltonian substructures in simple drawings</title><author>Bergold, Helena ; Felsner, Stefan ; Reddy, Meghana M ; Scheucher, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28146242563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graph theory</topic><topic>Lower bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Bergold, Helena</creatorcontrib><creatorcontrib>Felsner, Stefan</creatorcontrib><creatorcontrib>Reddy, Meghana M</creatorcontrib><creatorcontrib>Scheucher, Manfred</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergold, Helena</au><au>Felsner, Stefan</au><au>Reddy, Meghana M</au><au>Scheucher, Manfred</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Using SAT to study plane Hamiltonian substructures in simple drawings</atitle><jtitle>arXiv.org</jtitle><date>2023-05-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In 1988 Rafla conjectured that every simple drawing of a complete graph \(K_n\) contains a plane, i.e., non-crossing, Hamiltonian cycle. The conjecture is far from being resolved. The lower bounds for plane paths and plane matchings have recently been raised to \((\log n)^{1-o(1)}\) and \(\Omega(\sqrt{n})\), respectively. We develop a SAT framework which allows the study of simple drawings of \(K_n\). Based on the computational data we conjecture that every simple drawing of \(K_n\) contains a plane Hamiltonian subgraph with \(2n-3\) edges. We prove this strengthening of Rafla's conjecture for convex drawings, a rich subclass of simple drawings. Our computer experiments also led to other new challenging conjectures regarding plane substructures in simple drawings of complete graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2814624256
source Free E- Journals
subjects Graph theory
Lower bounds
title Using SAT to study plane Hamiltonian substructures in simple drawings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Using%20SAT%20to%20study%20plane%20Hamiltonian%20substructures%20in%20simple%20drawings&rft.jtitle=arXiv.org&rft.au=Bergold,%20Helena&rft.date=2023-05-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2814624256%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814624256&rft_id=info:pmid/&rfr_iscdi=true