Federated Learning over Harmonized Data Silos
Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assume...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Stripelis, Dimitris Ambite, Jose Luis |
description | Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2814623728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814623728</sourcerecordid><originalsourceid>FETCH-proquest_journals_28146237283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdUtNSS1KLElNUfBJTSzKy8xLV8gvSy1S8Egsys3Py6wCSrgkliQqBGfm5BfzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYWhiZmRsbmRhTFxqgCb9TGt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814623728</pqid></control><display><type>article</type><title>Federated Learning over Harmonized Data Silos</title><source>Freely Accessible Journals</source><creator>Stripelis, Dimitris ; Ambite, Jose Luis</creator><creatorcontrib>Stripelis, Dimitris ; Ambite, Jose Luis</creatorcontrib><description>Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data exchange ; Data integration ; Data management ; Geographical distribution ; Information management ; Machine learning ; Management information systems ; Structured data ; Unstructured data</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Stripelis, Dimitris</creatorcontrib><creatorcontrib>Ambite, Jose Luis</creatorcontrib><title>Federated Learning over Harmonized Data Silos</title><title>arXiv.org</title><description>Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.</description><subject>Data exchange</subject><subject>Data integration</subject><subject>Data management</subject><subject>Geographical distribution</subject><subject>Information management</subject><subject>Machine learning</subject><subject>Management information systems</subject><subject>Structured data</subject><subject>Unstructured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdUtNSS1KLElNUfBJTSzKy8xLV8gvSy1S8Egsys3Py6wCSrgkliQqBGfm5BfzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYWhiZmRsbmRhTFxqgCb9TGt</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Stripelis, Dimitris</creator><creator>Ambite, Jose Luis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230515</creationdate><title>Federated Learning over Harmonized Data Silos</title><author>Stripelis, Dimitris ; Ambite, Jose Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28146237283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data exchange</topic><topic>Data integration</topic><topic>Data management</topic><topic>Geographical distribution</topic><topic>Information management</topic><topic>Machine learning</topic><topic>Management information systems</topic><topic>Structured data</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Stripelis, Dimitris</creatorcontrib><creatorcontrib>Ambite, Jose Luis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stripelis, Dimitris</au><au>Ambite, Jose Luis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Learning over Harmonized Data Silos</atitle><jtitle>arXiv.org</jtitle><date>2023-05-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2814623728 |
source | Freely Accessible Journals |
subjects | Data exchange Data integration Data management Geographical distribution Information management Machine learning Management information systems Structured data Unstructured data |
title | Federated Learning over Harmonized Data Silos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Learning%20over%20Harmonized%20Data%20Silos&rft.jtitle=arXiv.org&rft.au=Stripelis,%20Dimitris&rft.date=2023-05-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2814623728%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814623728&rft_id=info:pmid/&rfr_iscdi=true |