Federated Learning over Harmonized Data Silos

Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Stripelis, Dimitris, Ambite, Jose Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Stripelis, Dimitris
Ambite, Jose Luis
description Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2814623728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814623728</sourcerecordid><originalsourceid>FETCH-proquest_journals_28146237283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdUtNSS1KLElNUfBJTSzKy8xLV8gvSy1S8Egsys3Py6wCSrgkliQqBGfm5BfzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYWhiZmRsbmRhTFxqgCb9TGt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814623728</pqid></control><display><type>article</type><title>Federated Learning over Harmonized Data Silos</title><source>Freely Accessible Journals</source><creator>Stripelis, Dimitris ; Ambite, Jose Luis</creator><creatorcontrib>Stripelis, Dimitris ; Ambite, Jose Luis</creatorcontrib><description>Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data exchange ; Data integration ; Data management ; Geographical distribution ; Information management ; Machine learning ; Management information systems ; Structured data ; Unstructured data</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Stripelis, Dimitris</creatorcontrib><creatorcontrib>Ambite, Jose Luis</creatorcontrib><title>Federated Learning over Harmonized Data Silos</title><title>arXiv.org</title><description>Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.</description><subject>Data exchange</subject><subject>Data integration</subject><subject>Data management</subject><subject>Geographical distribution</subject><subject>Information management</subject><subject>Machine learning</subject><subject>Management information systems</subject><subject>Structured data</subject><subject>Unstructured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdUtNSS1KLElNUfBJTSzKy8xLV8gvSy1S8Egsys3Py6wCSrgkliQqBGfm5BfzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYWhiZmRsbmRhTFxqgCb9TGt</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Stripelis, Dimitris</creator><creator>Ambite, Jose Luis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230515</creationdate><title>Federated Learning over Harmonized Data Silos</title><author>Stripelis, Dimitris ; Ambite, Jose Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28146237283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data exchange</topic><topic>Data integration</topic><topic>Data management</topic><topic>Geographical distribution</topic><topic>Information management</topic><topic>Machine learning</topic><topic>Management information systems</topic><topic>Structured data</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Stripelis, Dimitris</creatorcontrib><creatorcontrib>Ambite, Jose Luis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stripelis, Dimitris</au><au>Ambite, Jose Luis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Learning over Harmonized Data Silos</atitle><jtitle>arXiv.org</jtitle><date>2023-05-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2814623728
source Freely Accessible Journals
subjects Data exchange
Data integration
Data management
Geographical distribution
Information management
Machine learning
Management information systems
Structured data
Unstructured data
title Federated Learning over Harmonized Data Silos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Learning%20over%20Harmonized%20Data%20Silos&rft.jtitle=arXiv.org&rft.au=Stripelis,%20Dimitris&rft.date=2023-05-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2814623728%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814623728&rft_id=info:pmid/&rfr_iscdi=true