Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models
Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been lo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cao, Boxi Tang, Qiaoyu Lin, Hongyu Jiang, Shanshan Dong, Bin Han, Xianpei Chen, Jiawei Wang, Tianshu Sun, Le |
description | Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memory mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2814621725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814621725</sourcerecordid><originalsourceid>FETCH-proquest_journals_28146217253</originalsourceid><addsrcrecordid>eNqNjssKgkAUQIcgSMp_uNBa0PGRuxaVBOUm2rQSyauO6Nyah0Ffn0Ef0OoszlmcGXN4GAZeGnG-YK7Wne_7PNnwOA4ddrugQWnEiEAKMlINmtr2W9iLUcgGhDQEpkU4SXr1WDUIOQ6kxPtrc7y3pRR6AKrhXMrGlt-AKuz1is3rstfo_rhk6-xw3R29h6KnRW2KjqySkyp4GkQJD6al8L_qA9RpQh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814621725</pqid></control><display><type>article</type><title>Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models</title><source>Free E- Journals</source><creator>Cao, Boxi ; Tang, Qiaoyu ; Lin, Hongyu ; Jiang, Shanshan ; Dong, Bin ; Han, Xianpei ; Chen, Jiawei ; Wang, Tianshu ; Sun, Le</creator><creatorcontrib>Cao, Boxi ; Tang, Qiaoyu ; Lin, Hongyu ; Jiang, Shanshan ; Dong, Bin ; Han, Xianpei ; Chen, Jiawei ; Wang, Tianshu ; Sun, Le</creatorcontrib><description>Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memory mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Machine learning ; Neural networks ; Training</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cao, Boxi</creatorcontrib><creatorcontrib>Tang, Qiaoyu</creatorcontrib><creatorcontrib>Lin, Hongyu</creatorcontrib><creatorcontrib>Jiang, Shanshan</creatorcontrib><creatorcontrib>Dong, Bin</creatorcontrib><creatorcontrib>Han, Xianpei</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Wang, Tianshu</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><title>Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models</title><title>arXiv.org</title><description>Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memory mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjssKgkAUQIcgSMp_uNBa0PGRuxaVBOUm2rQSyauO6Nyah0Ffn0Ef0OoszlmcGXN4GAZeGnG-YK7Wne_7PNnwOA4ddrugQWnEiEAKMlINmtr2W9iLUcgGhDQEpkU4SXr1WDUIOQ6kxPtrc7y3pRR6AKrhXMrGlt-AKuz1is3rstfo_rhk6-xw3R29h6KnRW2KjqySkyp4GkQJD6al8L_qA9RpQh0</recordid><startdate>20240313</startdate><enddate>20240313</enddate><creator>Cao, Boxi</creator><creator>Tang, Qiaoyu</creator><creator>Lin, Hongyu</creator><creator>Jiang, Shanshan</creator><creator>Dong, Bin</creator><creator>Han, Xianpei</creator><creator>Chen, Jiawei</creator><creator>Wang, Tianshu</creator><creator>Sun, Le</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240313</creationdate><title>Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models</title><author>Cao, Boxi ; Tang, Qiaoyu ; Lin, Hongyu ; Jiang, Shanshan ; Dong, Bin ; Han, Xianpei ; Chen, Jiawei ; Wang, Tianshu ; Sun, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28146217253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Boxi</creatorcontrib><creatorcontrib>Tang, Qiaoyu</creatorcontrib><creatorcontrib>Lin, Hongyu</creatorcontrib><creatorcontrib>Jiang, Shanshan</creatorcontrib><creatorcontrib>Dong, Bin</creatorcontrib><creatorcontrib>Han, Xianpei</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Wang, Tianshu</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Boxi</au><au>Tang, Qiaoyu</au><au>Lin, Hongyu</au><au>Jiang, Shanshan</au><au>Dong, Bin</au><au>Han, Xianpei</au><au>Chen, Jiawei</au><au>Wang, Tianshu</au><au>Sun, Le</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memory mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2814621725 |
source | Free E- Journals |
subjects | Algorithms Machine learning Neural networks Training |
title | Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Retentive%20or%20Forgetful?%20Diving%20into%20the%20Knowledge%20Memorizing%20Mechanism%20of%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Cao,%20Boxi&rft.date=2024-03-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2814621725%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814621725&rft_id=info:pmid/&rfr_iscdi=true |