Approximating biobjective minimization problems using general ordering cones
Abstract This article investigates the approximation quality achievable for biobjective minimization problems with respect to the Pareto cone by solutions that are (approximately) optimal with respect to larger ordering cones. When simultaneously considering α-approximations for all closed convex or...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2023-06, Vol.86 (2), p.393-415 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 2 |
container_start_page | 393 |
container_title | Journal of global optimization |
container_volume | 86 |
creator | Herzel, Arne Helfrich, Stephan Ruzika, Stefan Thielen, Clemens |
description | Abstract
This article investigates the approximation quality achievable for biobjective minimization problems with respect to the Pareto cone by solutions that are (approximately) optimal with respect to larger ordering cones. When simultaneously considering α-approximations for all closed convex ordering cones of a fixed inner angle γ∈π2,π, an approximation guarantee between αand 2αis achieved, which depends continuously on γ. The analysis is best-possible for any inner angle and it generalizes and unifies the known results that the set of supported solutions is a 2-approximation and that the efficient set itself is a 1-approximation. Moreover, it is shown that, for maximization problems, no approximation guarantee is achievable in general by considering larger ordering cones in the described fashion, which again generalizes a known result about the set of supported solutions. |
doi_str_mv | 10.1007/s10898-023-01276-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2814621520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749711358</galeid><sourcerecordid>A749711358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4bd4b4f24921d0012f2e8e0419424b1f6db110d2946964ad0b11c4892810e8f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AUEoeK7OpGmbHJfFL1jwsvfQj-mSpW1q0pXVX29qBT1JDpPMvM_k5WXsGuEOAfJ7jyCVjIEnMSDPs_h4whaY5knMFWanf-7n7ML7PQAomfIF26yGwdmj6YrR9LuoNLbcUzWad4o605vOfIaB7aMgKlvqfHTwk25HPbmijayryU2NyvbkL9lZU7Sern7qkm0fH7br53jz-vSyXm3iSnAxxqKsRSkaLhTHGoLfhpMkEKjCuMQmq0tEqLkSmcpEUUN4VkIqLhFINsmS3c5rg6m3A_lR7-3B9eFHHSQi45hyCKq7WbUrWtKmb-zoiiqcmjoz2W1M6K9yoXLEJJUB4DNQOeu9o0YPLuTiPjSCnlLWc8o6pKy_U9bHACUz5IcpB3K_Xv6lbmaKghHj9VT8aJ1OIM-4Sr4A-P6J8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814621520</pqid></control><display><type>article</type><title>Approximating biobjective minimization problems using general ordering cones</title><source>SpringerLink Journals</source><creator>Herzel, Arne ; Helfrich, Stephan ; Ruzika, Stefan ; Thielen, Clemens</creator><creatorcontrib>Herzel, Arne ; Helfrich, Stephan ; Ruzika, Stefan ; Thielen, Clemens</creatorcontrib><description>Abstract
This article investigates the approximation quality achievable for biobjective minimization problems with respect to the Pareto cone by solutions that are (approximately) optimal with respect to larger ordering cones. When simultaneously considering α-approximations for all closed convex ordering cones of a fixed inner angle γ∈π2,π, an approximation guarantee between αand 2αis achieved, which depends continuously on γ. The analysis is best-possible for any inner angle and it generalizes and unifies the known results that the set of supported solutions is a 2-approximation and that the efficient set itself is a 1-approximation. Moreover, it is shown that, for maximization problems, no approximation guarantee is achievable in general by considering larger ordering cones in the described fashion, which again generalizes a known result about the set of supported solutions.</description><identifier>ISSN: 1573-2916</identifier><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-023-01276-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximate Pareto set ; Approximation ; Computer Science ; Cones ; Efficient solution ; Guarantees ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multiobjective optimization ; Operations Research/Decision Theory ; Optimization ; Ordering cone ; Preferences ; Real Functions ; Supported solution</subject><ispartof>Journal of global optimization, 2023-06, Vol.86 (2), p.393-415</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4bd4b4f24921d0012f2e8e0419424b1f6db110d2946964ad0b11c4892810e8f3</citedby><cites>FETCH-LOGICAL-c424t-4bd4b4f24921d0012f2e8e0419424b1f6db110d2946964ad0b11c4892810e8f3</cites><orcidid>0000-0003-0897-3571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-023-01276-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-023-01276-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Herzel, Arne</creatorcontrib><creatorcontrib>Helfrich, Stephan</creatorcontrib><creatorcontrib>Ruzika, Stefan</creatorcontrib><creatorcontrib>Thielen, Clemens</creatorcontrib><title>Approximating biobjective minimization problems using general ordering cones</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Abstract
This article investigates the approximation quality achievable for biobjective minimization problems with respect to the Pareto cone by solutions that are (approximately) optimal with respect to larger ordering cones. When simultaneously considering α-approximations for all closed convex ordering cones of a fixed inner angle γ∈π2,π, an approximation guarantee between αand 2αis achieved, which depends continuously on γ. The analysis is best-possible for any inner angle and it generalizes and unifies the known results that the set of supported solutions is a 2-approximation and that the efficient set itself is a 1-approximation. Moreover, it is shown that, for maximization problems, no approximation guarantee is achievable in general by considering larger ordering cones in the described fashion, which again generalizes a known result about the set of supported solutions.</description><subject>Approximate Pareto set</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Cones</subject><subject>Efficient solution</subject><subject>Guarantees</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiobjective optimization</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ordering cone</subject><subject>Preferences</subject><subject>Real Functions</subject><subject>Supported solution</subject><issn>1573-2916</issn><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AUEoeK7OpGmbHJfFL1jwsvfQj-mSpW1q0pXVX29qBT1JDpPMvM_k5WXsGuEOAfJ7jyCVjIEnMSDPs_h4whaY5knMFWanf-7n7ML7PQAomfIF26yGwdmj6YrR9LuoNLbcUzWad4o605vOfIaB7aMgKlvqfHTwk25HPbmijayryU2NyvbkL9lZU7Sern7qkm0fH7br53jz-vSyXm3iSnAxxqKsRSkaLhTHGoLfhpMkEKjCuMQmq0tEqLkSmcpEUUN4VkIqLhFINsmS3c5rg6m3A_lR7-3B9eFHHSQi45hyCKq7WbUrWtKmb-zoiiqcmjoz2W1M6K9yoXLEJJUB4DNQOeu9o0YPLuTiPjSCnlLWc8o6pKy_U9bHACUz5IcpB3K_Xv6lbmaKghHj9VT8aJ1OIM-4Sr4A-P6J8Q</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Herzel, Arne</creator><creator>Helfrich, Stephan</creator><creator>Ruzika, Stefan</creator><creator>Thielen, Clemens</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>OT2</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0897-3571</orcidid></search><sort><creationdate>20230601</creationdate><title>Approximating biobjective minimization problems using general ordering cones</title><author>Herzel, Arne ; Helfrich, Stephan ; Ruzika, Stefan ; Thielen, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4bd4b4f24921d0012f2e8e0419424b1f6db110d2946964ad0b11c4892810e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximate Pareto set</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Cones</topic><topic>Efficient solution</topic><topic>Guarantees</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiobjective optimization</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ordering cone</topic><topic>Preferences</topic><topic>Real Functions</topic><topic>Supported solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herzel, Arne</creatorcontrib><creatorcontrib>Helfrich, Stephan</creatorcontrib><creatorcontrib>Ruzika, Stefan</creatorcontrib><creatorcontrib>Thielen, Clemens</creatorcontrib><collection>EconStor</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herzel, Arne</au><au>Helfrich, Stephan</au><au>Ruzika, Stefan</au><au>Thielen, Clemens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating biobjective minimization problems using general ordering cones</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>86</volume><issue>2</issue><spage>393</spage><epage>415</epage><pages>393-415</pages><issn>1573-2916</issn><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Abstract
This article investigates the approximation quality achievable for biobjective minimization problems with respect to the Pareto cone by solutions that are (approximately) optimal with respect to larger ordering cones. When simultaneously considering α-approximations for all closed convex ordering cones of a fixed inner angle γ∈π2,π, an approximation guarantee between αand 2αis achieved, which depends continuously on γ. The analysis is best-possible for any inner angle and it generalizes and unifies the known results that the set of supported solutions is a 2-approximation and that the efficient set itself is a 1-approximation. Moreover, it is shown that, for maximization problems, no approximation guarantee is achievable in general by considering larger ordering cones in the described fashion, which again generalizes a known result about the set of supported solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-023-01276-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0897-3571</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-2916 |
ispartof | Journal of global optimization, 2023-06, Vol.86 (2), p.393-415 |
issn | 1573-2916 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2814621520 |
source | SpringerLink Journals |
subjects | Approximate Pareto set Approximation Computer Science Cones Efficient solution Guarantees Mathematical analysis Mathematics Mathematics and Statistics Multiobjective optimization Operations Research/Decision Theory Optimization Ordering cone Preferences Real Functions Supported solution |
title | Approximating biobjective minimization problems using general ordering cones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20biobjective%20minimization%20problems%20using%20general%20ordering%20cones&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Herzel,%20Arne&rft.date=2023-06-01&rft.volume=86&rft.issue=2&rft.spage=393&rft.epage=415&rft.pages=393-415&rft.issn=1573-2916&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-023-01276-x&rft_dat=%3Cgale_proqu%3EA749711358%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814621520&rft_id=info:pmid/&rft_galeid=A749711358&rfr_iscdi=true |