Causal inference and large-scale expert validation shed light on the drivers of SDM accuracy and variance

Aim To develop a causal understanding of the drivers of Species distribution model (SDM) performance. Location United Kingdom (UK). Methods We measured the accuracy and variance of SDMs fitted for 518 species of invertebrate and plant in the UK. Our measure of variance reflects variation among repli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diversity & distributions 2023-06, Vol.29 (6), p.774-784
Hauptverfasser: Boyd, Robin J., Harvey, Martin, Roy, David B., Barber, Tony, Haysom, Karen A., Macadam, Craig R., Morris, Roger K. A., Palmer, Carolyn, Palmer, Stephen, Preston, Chris D., Taylor, Pam, Ward, Robert, Ball, Stuart G., Pescott, Oliver L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 784
container_issue 6
container_start_page 774
container_title Diversity & distributions
container_volume 29
creator Boyd, Robin J.
Harvey, Martin
Roy, David B.
Barber, Tony
Haysom, Karen A.
Macadam, Craig R.
Morris, Roger K. A.
Palmer, Carolyn
Palmer, Stephen
Preston, Chris D.
Taylor, Pam
Ward, Robert
Ball, Stuart G.
Pescott, Oliver L.
description Aim To develop a causal understanding of the drivers of Species distribution model (SDM) performance. Location United Kingdom (UK). Methods We measured the accuracy and variance of SDMs fitted for 518 species of invertebrate and plant in the UK. Our measure of variance reflects variation among replicate model fits, and taxon experts assessed model accuracy. Using directed acyclic graphs, we developed a causal model depicting plausible effects of explanatory variables (e.g. species' prevalence, sample size) on SDM accuracy and variance and quantified those effects using a multilevel piecewise path model. Results According to our model, sample size and niche completeness (proportion of a species' niche covered by sampling) directly affect SDM accuracy and variance. Prevalence and range completeness have indirect effects mediated by sample size. Challenging conventional wisdom, we found that the effect of prevalence on SDM accuracy is positive. This reflects the facts that sample size has a positive effect on accuracy and larger sample sizes are possible for widespread species. It is possible, however, that the omission of an unobserved confounder biased this effect. Previous studies, which reported negative correlations between prevalence and SDM accuracy, conditioned on sample size. Main conclusions Our model explicates the causal basis of previously reported correlations between SDM performance and species/data characteristics. It also suggests that niche completeness has similarly large effects on SDM accuracy and variance as sample size. Analysts should consider niche completeness, or proxies thereof, in addition to sample size when deciding whether modelling is worthwhile.
doi_str_mv 10.1111/ddi.13698
format Article
fullrecord <record><control><sourceid>jstor_JFNAL</sourceid><recordid>TN_cdi_proquest_journals_2814614125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48727341</jstor_id><sourcerecordid>48727341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-cad174f40a33aa124b963972d3ca03538a1cc9f87f47290b4416875c6cae700d3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4AOQLLFikeJX7GSJWh6VilgAa2tqO62rkBQ7LfTvMQ2wYzYzI517R3MROqdkRFNdW-tHlMuyOEADKhTLhBTsMM1cyqzMqTxGJzGuCCGc52yA_Bg2EWrsm8oF1xiHobG4hrBwWTRQO-w-1y50eAu1t9D5tsFx6RLiF8sOp61bOmyD37oQcVvh58kjBmM2Acxu77WF4CEZn6KjCurozn76EL3e3b6MH7LZ0_10fDPLDM9FkRmwVIlKEOAcgDIxLyUvFbPcAOE5L4AaU1aFqtJ3JZkLQWWhciMNOEWI5UN02fuuQ_u-cbHTq3YTmnRSs4IKSQVleaKuesqENsbgKr0O_g3CTlOiv5PUKUm9TzKx1z374Wu3-x_Uk8n0V3HRK1axa8OfQhSKKS4o_wJegn3h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814614125</pqid></control><display><type>article</type><title>Causal inference and large-scale expert validation shed light on the drivers of SDM accuracy and variance</title><source>Jstor Journals Open Access</source><creator>Boyd, Robin J. ; Harvey, Martin ; Roy, David B. ; Barber, Tony ; Haysom, Karen A. ; Macadam, Craig R. ; Morris, Roger K. A. ; Palmer, Carolyn ; Palmer, Stephen ; Preston, Chris D. ; Taylor, Pam ; Ward, Robert ; Ball, Stuart G. ; Pescott, Oliver L.</creator><creatorcontrib>Boyd, Robin J. ; Harvey, Martin ; Roy, David B. ; Barber, Tony ; Haysom, Karen A. ; Macadam, Craig R. ; Morris, Roger K. A. ; Palmer, Carolyn ; Palmer, Stephen ; Preston, Chris D. ; Taylor, Pam ; Ward, Robert ; Ball, Stuart G. ; Pescott, Oliver L.</creatorcontrib><description>Aim To develop a causal understanding of the drivers of Species distribution model (SDM) performance. Location United Kingdom (UK). Methods We measured the accuracy and variance of SDMs fitted for 518 species of invertebrate and plant in the UK. Our measure of variance reflects variation among replicate model fits, and taxon experts assessed model accuracy. Using directed acyclic graphs, we developed a causal model depicting plausible effects of explanatory variables (e.g. species' prevalence, sample size) on SDM accuracy and variance and quantified those effects using a multilevel piecewise path model. Results According to our model, sample size and niche completeness (proportion of a species' niche covered by sampling) directly affect SDM accuracy and variance. Prevalence and range completeness have indirect effects mediated by sample size. Challenging conventional wisdom, we found that the effect of prevalence on SDM accuracy is positive. This reflects the facts that sample size has a positive effect on accuracy and larger sample sizes are possible for widespread species. It is possible, however, that the omission of an unobserved confounder biased this effect. Previous studies, which reported negative correlations between prevalence and SDM accuracy, conditioned on sample size. Main conclusions Our model explicates the causal basis of previously reported correlations between SDM performance and species/data characteristics. It also suggests that niche completeness has similarly large effects on SDM accuracy and variance as sample size. Analysts should consider niche completeness, or proxies thereof, in addition to sample size when deciding whether modelling is worthwhile.</description><identifier>ISSN: 1366-9516</identifier><identifier>EISSN: 1472-4642</identifier><identifier>DOI: 10.1111/ddi.13698</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Accuracy ; Algorithms ; causal inference ; Completeness ; directed acyclic graph ; expert elicitation ; Geographical distribution ; Graph theory ; Habitats ; Model accuracy ; Niches ; Regression analysis ; RESEARCH ARTICLE ; Species ; species distribution modelling ; Statistics ; Structural equation modeling ; structural equation modelling ; Variables ; Variance analysis</subject><ispartof>Diversity &amp; distributions, 2023-06, Vol.29 (6), p.774-784</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-cad174f40a33aa124b963972d3ca03538a1cc9f87f47290b4416875c6cae700d3</citedby><cites>FETCH-LOGICAL-c3548-cad174f40a33aa124b963972d3ca03538a1cc9f87f47290b4416875c6cae700d3</cites><orcidid>0000-0002-7973-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48727341$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48727341$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,860,1411,11543,25334,27903,27904,45553,45554,46030,46454,54502,54508</link.rule.ids><linktorsrc>$$Uhttps://www.jstor.org/stable/48727341$$EView_record_in_JSTOR$$FView_record_in_$$GJSTOR</linktorsrc></links><search><creatorcontrib>Boyd, Robin J.</creatorcontrib><creatorcontrib>Harvey, Martin</creatorcontrib><creatorcontrib>Roy, David B.</creatorcontrib><creatorcontrib>Barber, Tony</creatorcontrib><creatorcontrib>Haysom, Karen A.</creatorcontrib><creatorcontrib>Macadam, Craig R.</creatorcontrib><creatorcontrib>Morris, Roger K. A.</creatorcontrib><creatorcontrib>Palmer, Carolyn</creatorcontrib><creatorcontrib>Palmer, Stephen</creatorcontrib><creatorcontrib>Preston, Chris D.</creatorcontrib><creatorcontrib>Taylor, Pam</creatorcontrib><creatorcontrib>Ward, Robert</creatorcontrib><creatorcontrib>Ball, Stuart G.</creatorcontrib><creatorcontrib>Pescott, Oliver L.</creatorcontrib><title>Causal inference and large-scale expert validation shed light on the drivers of SDM accuracy and variance</title><title>Diversity &amp; distributions</title><description>Aim To develop a causal understanding of the drivers of Species distribution model (SDM) performance. Location United Kingdom (UK). Methods We measured the accuracy and variance of SDMs fitted for 518 species of invertebrate and plant in the UK. Our measure of variance reflects variation among replicate model fits, and taxon experts assessed model accuracy. Using directed acyclic graphs, we developed a causal model depicting plausible effects of explanatory variables (e.g. species' prevalence, sample size) on SDM accuracy and variance and quantified those effects using a multilevel piecewise path model. Results According to our model, sample size and niche completeness (proportion of a species' niche covered by sampling) directly affect SDM accuracy and variance. Prevalence and range completeness have indirect effects mediated by sample size. Challenging conventional wisdom, we found that the effect of prevalence on SDM accuracy is positive. This reflects the facts that sample size has a positive effect on accuracy and larger sample sizes are possible for widespread species. It is possible, however, that the omission of an unobserved confounder biased this effect. Previous studies, which reported negative correlations between prevalence and SDM accuracy, conditioned on sample size. Main conclusions Our model explicates the causal basis of previously reported correlations between SDM performance and species/data characteristics. It also suggests that niche completeness has similarly large effects on SDM accuracy and variance as sample size. Analysts should consider niche completeness, or proxies thereof, in addition to sample size when deciding whether modelling is worthwhile.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>causal inference</subject><subject>Completeness</subject><subject>directed acyclic graph</subject><subject>expert elicitation</subject><subject>Geographical distribution</subject><subject>Graph theory</subject><subject>Habitats</subject><subject>Model accuracy</subject><subject>Niches</subject><subject>Regression analysis</subject><subject>RESEARCH ARTICLE</subject><subject>Species</subject><subject>species distribution modelling</subject><subject>Statistics</subject><subject>Structural equation modeling</subject><subject>structural equation modelling</subject><subject>Variables</subject><subject>Variance analysis</subject><issn>1366-9516</issn><issn>1472-4642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtOwzAQRS0EEqWw4AOQLLFikeJX7GSJWh6VilgAa2tqO62rkBQ7LfTvMQ2wYzYzI517R3MROqdkRFNdW-tHlMuyOEADKhTLhBTsMM1cyqzMqTxGJzGuCCGc52yA_Bg2EWrsm8oF1xiHobG4hrBwWTRQO-w-1y50eAu1t9D5tsFx6RLiF8sOp61bOmyD37oQcVvh58kjBmM2Acxu77WF4CEZn6KjCurozn76EL3e3b6MH7LZ0_10fDPLDM9FkRmwVIlKEOAcgDIxLyUvFbPcAOE5L4AaU1aFqtJ3JZkLQWWhciMNOEWI5UN02fuuQ_u-cbHTq3YTmnRSs4IKSQVleaKuesqENsbgKr0O_g3CTlOiv5PUKUm9TzKx1z374Wu3-x_Uk8n0V3HRK1axa8OfQhSKKS4o_wJegn3h</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Boyd, Robin J.</creator><creator>Harvey, Martin</creator><creator>Roy, David B.</creator><creator>Barber, Tony</creator><creator>Haysom, Karen A.</creator><creator>Macadam, Craig R.</creator><creator>Morris, Roger K. A.</creator><creator>Palmer, Carolyn</creator><creator>Palmer, Stephen</creator><creator>Preston, Chris D.</creator><creator>Taylor, Pam</creator><creator>Ward, Robert</creator><creator>Ball, Stuart G.</creator><creator>Pescott, Oliver L.</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7973-9865</orcidid></search><sort><creationdate>20230601</creationdate><title>Causal inference and large-scale expert validation shed light on the drivers of SDM accuracy and variance</title><author>Boyd, Robin J. ; Harvey, Martin ; Roy, David B. ; Barber, Tony ; Haysom, Karen A. ; Macadam, Craig R. ; Morris, Roger K. A. ; Palmer, Carolyn ; Palmer, Stephen ; Preston, Chris D. ; Taylor, Pam ; Ward, Robert ; Ball, Stuart G. ; Pescott, Oliver L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-cad174f40a33aa124b963972d3ca03538a1cc9f87f47290b4416875c6cae700d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>causal inference</topic><topic>Completeness</topic><topic>directed acyclic graph</topic><topic>expert elicitation</topic><topic>Geographical distribution</topic><topic>Graph theory</topic><topic>Habitats</topic><topic>Model accuracy</topic><topic>Niches</topic><topic>Regression analysis</topic><topic>RESEARCH ARTICLE</topic><topic>Species</topic><topic>species distribution modelling</topic><topic>Statistics</topic><topic>Structural equation modeling</topic><topic>structural equation modelling</topic><topic>Variables</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Robin J.</creatorcontrib><creatorcontrib>Harvey, Martin</creatorcontrib><creatorcontrib>Roy, David B.</creatorcontrib><creatorcontrib>Barber, Tony</creatorcontrib><creatorcontrib>Haysom, Karen A.</creatorcontrib><creatorcontrib>Macadam, Craig R.</creatorcontrib><creatorcontrib>Morris, Roger K. A.</creatorcontrib><creatorcontrib>Palmer, Carolyn</creatorcontrib><creatorcontrib>Palmer, Stephen</creatorcontrib><creatorcontrib>Preston, Chris D.</creatorcontrib><creatorcontrib>Taylor, Pam</creatorcontrib><creatorcontrib>Ward, Robert</creatorcontrib><creatorcontrib>Ball, Stuart G.</creatorcontrib><creatorcontrib>Pescott, Oliver L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Diversity &amp; distributions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyd, Robin J.</au><au>Harvey, Martin</au><au>Roy, David B.</au><au>Barber, Tony</au><au>Haysom, Karen A.</au><au>Macadam, Craig R.</au><au>Morris, Roger K. A.</au><au>Palmer, Carolyn</au><au>Palmer, Stephen</au><au>Preston, Chris D.</au><au>Taylor, Pam</au><au>Ward, Robert</au><au>Ball, Stuart G.</au><au>Pescott, Oliver L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal inference and large-scale expert validation shed light on the drivers of SDM accuracy and variance</atitle><jtitle>Diversity &amp; distributions</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>6</issue><spage>774</spage><epage>784</epage><pages>774-784</pages><issn>1366-9516</issn><eissn>1472-4642</eissn><abstract>Aim To develop a causal understanding of the drivers of Species distribution model (SDM) performance. Location United Kingdom (UK). Methods We measured the accuracy and variance of SDMs fitted for 518 species of invertebrate and plant in the UK. Our measure of variance reflects variation among replicate model fits, and taxon experts assessed model accuracy. Using directed acyclic graphs, we developed a causal model depicting plausible effects of explanatory variables (e.g. species' prevalence, sample size) on SDM accuracy and variance and quantified those effects using a multilevel piecewise path model. Results According to our model, sample size and niche completeness (proportion of a species' niche covered by sampling) directly affect SDM accuracy and variance. Prevalence and range completeness have indirect effects mediated by sample size. Challenging conventional wisdom, we found that the effect of prevalence on SDM accuracy is positive. This reflects the facts that sample size has a positive effect on accuracy and larger sample sizes are possible for widespread species. It is possible, however, that the omission of an unobserved confounder biased this effect. Previous studies, which reported negative correlations between prevalence and SDM accuracy, conditioned on sample size. Main conclusions Our model explicates the causal basis of previously reported correlations between SDM performance and species/data characteristics. It also suggests that niche completeness has similarly large effects on SDM accuracy and variance as sample size. Analysts should consider niche completeness, or proxies thereof, in addition to sample size when deciding whether modelling is worthwhile.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/ddi.13698</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7973-9865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1366-9516
ispartof Diversity & distributions, 2023-06, Vol.29 (6), p.774-784
issn 1366-9516
1472-4642
language eng
recordid cdi_proquest_journals_2814614125
source Jstor Journals Open Access
subjects Accuracy
Algorithms
causal inference
Completeness
directed acyclic graph
expert elicitation
Geographical distribution
Graph theory
Habitats
Model accuracy
Niches
Regression analysis
RESEARCH ARTICLE
Species
species distribution modelling
Statistics
Structural equation modeling
structural equation modelling
Variables
Variance analysis
title Causal inference and large-scale expert validation shed light on the drivers of SDM accuracy and variance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_JFNAL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20inference%20and%20large-scale%20expert%20validation%20shed%20light%20on%20the%20drivers%20of%20SDM%20accuracy%20and%20variance&rft.jtitle=Diversity%20&%20distributions&rft.au=Boyd,%20Robin%20J.&rft.date=2023-06-01&rft.volume=29&rft.issue=6&rft.spage=774&rft.epage=784&rft.pages=774-784&rft.issn=1366-9516&rft.eissn=1472-4642&rft_id=info:doi/10.1111/ddi.13698&rft_dat=%3Cjstor_JFNAL%3E48727341%3C/jstor_JFNAL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814614125&rft_id=info:pmid/&rft_jstor_id=48727341&rfr_iscdi=true