IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses
Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2023-04, Vol.21 (4), p.602-611 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 611 |
---|---|
container_issue | 4 |
container_start_page | 602 |
container_title | Revista IEEE América Latina |
container_volume | 21 |
creator | Hernandez-Morales, Carlos Alberto Luna-Rivera, Jose Martin Villarreal-Guerrero, Federico Delgado-Sanchez, Pablo Guadiana-Alvarado, Zoe Arturo |
description | Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost. |
doi_str_mv | 10.1109/TLA.2023.10128933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2814572287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10128933</ieee_id><sourcerecordid>2814572287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-fd6a18fbaf1731d21623202567d948e87ec6ad98049267f460048399a589a8673</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWKs_QPAh4PPWXHZzeSyl1kJFoetzSHdnNaVNapIK_fduaQWfZmDOmTnzIXRPyYhSop_qxXjECOMjSihTmvMLNKBVqQqiNbv811-jm5TWhHAlFB-geh7qYmUTtHi5s9nZDX4N3uUQnf_E1rd46n9cDH4LPuP3CK1rsgseLw8pwxZ3IeLl1saMZxHAf4V9gnSLrjq7SXB3rkP08TytJy_F4m02n4wXRUOlyEXXCktVt7IdlZy2jArG-x8qIVtdKlASGmFbrUipmZBdKQgpFdfaVkpbJSQfosfT3l0M33tI2azDPvr-pGGKlpVkTB1V9KRqYkgpQmd20fWRD4YSc4RnenjmCM_8wes9DyePA4B_-vP4F-PsaeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814572287</pqid></control><display><type>article</type><title>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</title><source>IEEE Electronic Library (IEL)</source><creator>Hernandez-Morales, Carlos Alberto ; Luna-Rivera, Jose Martin ; Villarreal-Guerrero, Federico ; Delgado-Sanchez, Pablo ; Guadiana-Alvarado, Zoe Arturo</creator><creatorcontrib>Hernandez-Morales, Carlos Alberto ; Luna-Rivera, Jose Martin ; Villarreal-Guerrero, Federico ; Delgado-Sanchez, Pablo ; Guadiana-Alvarado, Zoe Arturo</creatorcontrib><description>Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2023.10128933</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Agriculture ; Climate prediction ; Greenhouses ; Internet of Things ; Low-power wide area networks ; LPWAN ; Machine learning ; Monitoring ; Packing density ; Precision agriculture ; Prediction models ; Predictions ; Relative humidity ; Smart greenhouse ; Temperature sensors ; Visualization</subject><ispartof>Revista IEEE América Latina, 2023-04, Vol.21 (4), p.602-611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9053-0213 ; 0000-0002-2694-0012 ; 0000-0003-2325-7039 ; 0000-0001-7217-5713 ; 0000-0003-2560-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10128933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10128933$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hernandez-Morales, Carlos Alberto</creatorcontrib><creatorcontrib>Luna-Rivera, Jose Martin</creatorcontrib><creatorcontrib>Villarreal-Guerrero, Federico</creatorcontrib><creatorcontrib>Delgado-Sanchez, Pablo</creatorcontrib><creatorcontrib>Guadiana-Alvarado, Zoe Arturo</creatorcontrib><title>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.</description><subject>Agriculture</subject><subject>Climate prediction</subject><subject>Greenhouses</subject><subject>Internet of Things</subject><subject>Low-power wide area networks</subject><subject>LPWAN</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Packing density</subject><subject>Precision agriculture</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Relative humidity</subject><subject>Smart greenhouse</subject><subject>Temperature sensors</subject><subject>Visualization</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLAzEQhYMoWKs_QPAh4PPWXHZzeSyl1kJFoetzSHdnNaVNapIK_fduaQWfZmDOmTnzIXRPyYhSop_qxXjECOMjSihTmvMLNKBVqQqiNbv811-jm5TWhHAlFB-geh7qYmUTtHi5s9nZDX4N3uUQnf_E1rd46n9cDH4LPuP3CK1rsgseLw8pwxZ3IeLl1saMZxHAf4V9gnSLrjq7SXB3rkP08TytJy_F4m02n4wXRUOlyEXXCktVt7IdlZy2jArG-x8qIVtdKlASGmFbrUipmZBdKQgpFdfaVkpbJSQfosfT3l0M33tI2azDPvr-pGGKlpVkTB1V9KRqYkgpQmd20fWRD4YSc4RnenjmCM_8wes9DyePA4B_-vP4F-PsaeU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Hernandez-Morales, Carlos Alberto</creator><creator>Luna-Rivera, Jose Martin</creator><creator>Villarreal-Guerrero, Federico</creator><creator>Delgado-Sanchez, Pablo</creator><creator>Guadiana-Alvarado, Zoe Arturo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9053-0213</orcidid><orcidid>https://orcid.org/0000-0002-2694-0012</orcidid><orcidid>https://orcid.org/0000-0003-2325-7039</orcidid><orcidid>https://orcid.org/0000-0001-7217-5713</orcidid><orcidid>https://orcid.org/0000-0003-2560-871X</orcidid></search><sort><creationdate>20230401</creationdate><title>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</title><author>Hernandez-Morales, Carlos Alberto ; Luna-Rivera, Jose Martin ; Villarreal-Guerrero, Federico ; Delgado-Sanchez, Pablo ; Guadiana-Alvarado, Zoe Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-fd6a18fbaf1731d21623202567d948e87ec6ad98049267f460048399a589a8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Climate prediction</topic><topic>Greenhouses</topic><topic>Internet of Things</topic><topic>Low-power wide area networks</topic><topic>LPWAN</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Packing density</topic><topic>Precision agriculture</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Relative humidity</topic><topic>Smart greenhouse</topic><topic>Temperature sensors</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Morales, Carlos Alberto</creatorcontrib><creatorcontrib>Luna-Rivera, Jose Martin</creatorcontrib><creatorcontrib>Villarreal-Guerrero, Federico</creatorcontrib><creatorcontrib>Delgado-Sanchez, Pablo</creatorcontrib><creatorcontrib>Guadiana-Alvarado, Zoe Arturo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hernandez-Morales, Carlos Alberto</au><au>Luna-Rivera, Jose Martin</au><au>Villarreal-Guerrero, Federico</au><au>Delgado-Sanchez, Pablo</au><au>Guadiana-Alvarado, Zoe Arturo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>602</spage><epage>611</epage><pages>602-611</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2023.10128933</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9053-0213</orcidid><orcidid>https://orcid.org/0000-0002-2694-0012</orcidid><orcidid>https://orcid.org/0000-0003-2325-7039</orcidid><orcidid>https://orcid.org/0000-0001-7217-5713</orcidid><orcidid>https://orcid.org/0000-0003-2560-871X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2023-04, Vol.21 (4), p.602-611 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_2814572287 |
source | IEEE Electronic Library (IEL) |
subjects | Agriculture Climate prediction Greenhouses Internet of Things Low-power wide area networks LPWAN Machine learning Monitoring Packing density Precision agriculture Prediction models Predictions Relative humidity Smart greenhouse Temperature sensors Visualization |
title | IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IoT-based%20Spatial%20Monitoring%20and%20Environment%20Prediction%20System%20for%20Smart%20Greenhouses&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Hernandez-Morales,%20Carlos%20Alberto&rft.date=2023-04-01&rft.volume=21&rft.issue=4&rft.spage=602&rft.epage=611&rft.pages=602-611&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2023.10128933&rft_dat=%3Cproquest_RIE%3E2814572287%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814572287&rft_id=info:pmid/&rft_ieee_id=10128933&rfr_iscdi=true |