IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses

Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2023-04, Vol.21 (4), p.602-611
Hauptverfasser: Hernandez-Morales, Carlos Alberto, Luna-Rivera, Jose Martin, Villarreal-Guerrero, Federico, Delgado-Sanchez, Pablo, Guadiana-Alvarado, Zoe Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 4
container_start_page 602
container_title Revista IEEE América Latina
container_volume 21
creator Hernandez-Morales, Carlos Alberto
Luna-Rivera, Jose Martin
Villarreal-Guerrero, Federico
Delgado-Sanchez, Pablo
Guadiana-Alvarado, Zoe Arturo
description Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.
doi_str_mv 10.1109/TLA.2023.10128933
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2814572287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10128933</ieee_id><sourcerecordid>2814572287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-fd6a18fbaf1731d21623202567d948e87ec6ad98049267f460048399a589a8673</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWKs_QPAh4PPWXHZzeSyl1kJFoetzSHdnNaVNapIK_fduaQWfZmDOmTnzIXRPyYhSop_qxXjECOMjSihTmvMLNKBVqQqiNbv811-jm5TWhHAlFB-geh7qYmUTtHi5s9nZDX4N3uUQnf_E1rd46n9cDH4LPuP3CK1rsgseLw8pwxZ3IeLl1saMZxHAf4V9gnSLrjq7SXB3rkP08TytJy_F4m02n4wXRUOlyEXXCktVt7IdlZy2jArG-x8qIVtdKlASGmFbrUipmZBdKQgpFdfaVkpbJSQfosfT3l0M33tI2azDPvr-pGGKlpVkTB1V9KRqYkgpQmd20fWRD4YSc4RnenjmCM_8wes9DyePA4B_-vP4F-PsaeU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814572287</pqid></control><display><type>article</type><title>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</title><source>IEEE Electronic Library (IEL)</source><creator>Hernandez-Morales, Carlos Alberto ; Luna-Rivera, Jose Martin ; Villarreal-Guerrero, Federico ; Delgado-Sanchez, Pablo ; Guadiana-Alvarado, Zoe Arturo</creator><creatorcontrib>Hernandez-Morales, Carlos Alberto ; Luna-Rivera, Jose Martin ; Villarreal-Guerrero, Federico ; Delgado-Sanchez, Pablo ; Guadiana-Alvarado, Zoe Arturo</creatorcontrib><description>Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2023.10128933</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Agriculture ; Climate prediction ; Greenhouses ; Internet of Things ; Low-power wide area networks ; LPWAN ; Machine learning ; Monitoring ; Packing density ; Precision agriculture ; Prediction models ; Predictions ; Relative humidity ; Smart greenhouse ; Temperature sensors ; Visualization</subject><ispartof>Revista IEEE América Latina, 2023-04, Vol.21 (4), p.602-611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9053-0213 ; 0000-0002-2694-0012 ; 0000-0003-2325-7039 ; 0000-0001-7217-5713 ; 0000-0003-2560-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10128933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10128933$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hernandez-Morales, Carlos Alberto</creatorcontrib><creatorcontrib>Luna-Rivera, Jose Martin</creatorcontrib><creatorcontrib>Villarreal-Guerrero, Federico</creatorcontrib><creatorcontrib>Delgado-Sanchez, Pablo</creatorcontrib><creatorcontrib>Guadiana-Alvarado, Zoe Arturo</creatorcontrib><title>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.</description><subject>Agriculture</subject><subject>Climate prediction</subject><subject>Greenhouses</subject><subject>Internet of Things</subject><subject>Low-power wide area networks</subject><subject>LPWAN</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Packing density</subject><subject>Precision agriculture</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Relative humidity</subject><subject>Smart greenhouse</subject><subject>Temperature sensors</subject><subject>Visualization</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLAzEQhYMoWKs_QPAh4PPWXHZzeSyl1kJFoetzSHdnNaVNapIK_fduaQWfZmDOmTnzIXRPyYhSop_qxXjECOMjSihTmvMLNKBVqQqiNbv811-jm5TWhHAlFB-geh7qYmUTtHi5s9nZDX4N3uUQnf_E1rd46n9cDH4LPuP3CK1rsgseLw8pwxZ3IeLl1saMZxHAf4V9gnSLrjq7SXB3rkP08TytJy_F4m02n4wXRUOlyEXXCktVt7IdlZy2jArG-x8qIVtdKlASGmFbrUipmZBdKQgpFdfaVkpbJSQfosfT3l0M33tI2azDPvr-pGGKlpVkTB1V9KRqYkgpQmd20fWRD4YSc4RnenjmCM_8wes9DyePA4B_-vP4F-PsaeU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Hernandez-Morales, Carlos Alberto</creator><creator>Luna-Rivera, Jose Martin</creator><creator>Villarreal-Guerrero, Federico</creator><creator>Delgado-Sanchez, Pablo</creator><creator>Guadiana-Alvarado, Zoe Arturo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9053-0213</orcidid><orcidid>https://orcid.org/0000-0002-2694-0012</orcidid><orcidid>https://orcid.org/0000-0003-2325-7039</orcidid><orcidid>https://orcid.org/0000-0001-7217-5713</orcidid><orcidid>https://orcid.org/0000-0003-2560-871X</orcidid></search><sort><creationdate>20230401</creationdate><title>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</title><author>Hernandez-Morales, Carlos Alberto ; Luna-Rivera, Jose Martin ; Villarreal-Guerrero, Federico ; Delgado-Sanchez, Pablo ; Guadiana-Alvarado, Zoe Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-fd6a18fbaf1731d21623202567d948e87ec6ad98049267f460048399a589a8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Climate prediction</topic><topic>Greenhouses</topic><topic>Internet of Things</topic><topic>Low-power wide area networks</topic><topic>LPWAN</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Packing density</topic><topic>Precision agriculture</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Relative humidity</topic><topic>Smart greenhouse</topic><topic>Temperature sensors</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Hernandez-Morales, Carlos Alberto</creatorcontrib><creatorcontrib>Luna-Rivera, Jose Martin</creatorcontrib><creatorcontrib>Villarreal-Guerrero, Federico</creatorcontrib><creatorcontrib>Delgado-Sanchez, Pablo</creatorcontrib><creatorcontrib>Guadiana-Alvarado, Zoe Arturo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hernandez-Morales, Carlos Alberto</au><au>Luna-Rivera, Jose Martin</au><au>Villarreal-Guerrero, Federico</au><au>Delgado-Sanchez, Pablo</au><au>Guadiana-Alvarado, Zoe Arturo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>602</spage><epage>611</epage><pages>602-611</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Agriculture has seen several technological transformations in recent years, allowing accelerated growth in production to meet the greater consumer demand for food. In particular, the adoption of the internet of things (IoT) is rapidly transforming the future of agriculture. In this paper, we present a data-driven climate prediction model for greenhouses using an effective and low-cost IoT-based spatial monitoring system. The IoT infrastructure comprises four stages: data gathering, transmission, analysis and processing of information, and visualization. This system was deployed and tested in a real greenhouse for three months, monitoring the temperature, relative humidity, and CO2 levels. The behavior of these environmental variables were predicted 24h in advance, obtaining an advantage in prediction accuracy. Additionally, we developed a spatial monitoring strategy based on packing density theory as a solution to the climate variability within greenhouses, offering a compromise between effectiveness and cost.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2023.10128933</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9053-0213</orcidid><orcidid>https://orcid.org/0000-0002-2694-0012</orcidid><orcidid>https://orcid.org/0000-0003-2325-7039</orcidid><orcidid>https://orcid.org/0000-0001-7217-5713</orcidid><orcidid>https://orcid.org/0000-0003-2560-871X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2023-04, Vol.21 (4), p.602-611
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_2814572287
source IEEE Electronic Library (IEL)
subjects Agriculture
Climate prediction
Greenhouses
Internet of Things
Low-power wide area networks
LPWAN
Machine learning
Monitoring
Packing density
Precision agriculture
Prediction models
Predictions
Relative humidity
Smart greenhouse
Temperature sensors
Visualization
title IoT-based Spatial Monitoring and Environment Prediction System for Smart Greenhouses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IoT-based%20Spatial%20Monitoring%20and%20Environment%20Prediction%20System%20for%20Smart%20Greenhouses&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Hernandez-Morales,%20Carlos%20Alberto&rft.date=2023-04-01&rft.volume=21&rft.issue=4&rft.spage=602&rft.epage=611&rft.pages=602-611&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2023.10128933&rft_dat=%3Cproquest_RIE%3E2814572287%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814572287&rft_id=info:pmid/&rft_ieee_id=10128933&rfr_iscdi=true