Integration of phase change thermal storage system with vertical solar Chimney In Greenhouse

The performance stability of the system can be improved by incorporating a solar chimney with a phase-change material (PCM). It is recommended that instead of using the traditional multi-curved trough air collectors for solar greenhouses, a solar phase change thermal storage wall construction system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-05, Vol.2467 (1), p.12021
Hauptverfasser: Fu, Cheng fang, Lu, Mingxu, Zhao, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12021
container_title Journal of physics. Conference series
container_volume 2467
creator Fu, Cheng fang
Lu, Mingxu
Zhao, Bo
description The performance stability of the system can be improved by incorporating a solar chimney with a phase-change material (PCM). It is recommended that instead of using the traditional multi-curved trough air collectors for solar greenhouses, a solar phase change thermal storage wall construction system with vertical air channels be employed. Solar thermal utilization of the rear wall. In order to verify feasibility of the construction system, a multi-curved trough air collector test system for solar greenhouse and a phase-change heat storage wall test system with vertical air channels were built respectively. The air velocity in the heater, the air flow parameters (air velocity, air channel spacing, air flow direction) in the sensible heat storage wall layer in the solar greenhouse, etc. The study’s findings indicate that the collector performs at its peak level of total heat absorption when its air velocity is between 1.4 and 1.8 m/s, and that heat absorption rises as solar radiation intensity rises. The suggested system design orientation offers an efficient way to raise the thermal performance of the system with the least amount of work and expense for practical applications.
doi_str_mv 10.1088/1742-6596/2467/1/012021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814467327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814467327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-830dea34a412f55b399366ad40c04ca88c904e7f943ea41e8bd417a4b816d1633</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIsoOKd_gwHfhNr8WpM-StE5GSiob0LI2uvasTY1yZT996ZUFEHwXu6O--4Ovig6J_iKYCkTIjiN01mWJpSnIiEJJhRTchBNvieH37WUx9GJcxuMWQgxiV4XnYe11b4xHTIV6mvtABW17taAfA221VvkvLE69G7vPLToo_E1egfrm2IYmq22KK-btoM9WnRobgG62uwcnEZHld46OPvK0-jl9uY5v4uXD_NFfr2MCyo4iSXDJWjGNSe0ms1WLMtYmuqS4wLzQktZZJiDqDLOIDAgVyUnQvOVJGlJUsam0cV4t7fmbQfOq43Z2S68VFQSHrQwKgIlRqqwxjkLlept02q7VwSrQaUaJKlBmBpUKqJGlWHzctxsTP9z-v4xf_oNqr6sAsz-gP978QkA24M5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814467327</pqid></control><display><type>article</type><title>Integration of phase change thermal storage system with vertical solar Chimney In Greenhouse</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fu, Cheng fang ; Lu, Mingxu ; Zhao, Bo</creator><creatorcontrib>Fu, Cheng fang ; Lu, Mingxu ; Zhao, Bo</creatorcontrib><description>The performance stability of the system can be improved by incorporating a solar chimney with a phase-change material (PCM). It is recommended that instead of using the traditional multi-curved trough air collectors for solar greenhouses, a solar phase change thermal storage wall construction system with vertical air channels be employed. Solar thermal utilization of the rear wall. In order to verify feasibility of the construction system, a multi-curved trough air collector test system for solar greenhouse and a phase-change heat storage wall test system with vertical air channels were built respectively. The air velocity in the heater, the air flow parameters (air velocity, air channel spacing, air flow direction) in the sensible heat storage wall layer in the solar greenhouse, etc. The study’s findings indicate that the collector performs at its peak level of total heat absorption when its air velocity is between 1.4 and 1.8 m/s, and that heat absorption rises as solar radiation intensity rises. The suggested system design orientation offers an efficient way to raise the thermal performance of the system with the least amount of work and expense for practical applications.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2467/1/012021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Absorption ; Air flow ; Channels ; Enthalpy ; Greenhouses ; Heat ; Heat storage ; Phase change materials ; Physics ; Radiant flux density ; Solar chimneys ; Solar heating ; Solar radiation ; Systems design ; Test systems ; Thermal storage ; Thermal utilization</subject><ispartof>Journal of physics. Conference series, 2023-05, Vol.2467 (1), p.12021</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2741-830dea34a412f55b399366ad40c04ca88c904e7f943ea41e8bd417a4b816d1633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2467/1/012021/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27922,27923,38866,38888,53838,53865</link.rule.ids></links><search><creatorcontrib>Fu, Cheng fang</creatorcontrib><creatorcontrib>Lu, Mingxu</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><title>Integration of phase change thermal storage system with vertical solar Chimney In Greenhouse</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The performance stability of the system can be improved by incorporating a solar chimney with a phase-change material (PCM). It is recommended that instead of using the traditional multi-curved trough air collectors for solar greenhouses, a solar phase change thermal storage wall construction system with vertical air channels be employed. Solar thermal utilization of the rear wall. In order to verify feasibility of the construction system, a multi-curved trough air collector test system for solar greenhouse and a phase-change heat storage wall test system with vertical air channels were built respectively. The air velocity in the heater, the air flow parameters (air velocity, air channel spacing, air flow direction) in the sensible heat storage wall layer in the solar greenhouse, etc. The study’s findings indicate that the collector performs at its peak level of total heat absorption when its air velocity is between 1.4 and 1.8 m/s, and that heat absorption rises as solar radiation intensity rises. The suggested system design orientation offers an efficient way to raise the thermal performance of the system with the least amount of work and expense for practical applications.</description><subject>Absorption</subject><subject>Air flow</subject><subject>Channels</subject><subject>Enthalpy</subject><subject>Greenhouses</subject><subject>Heat</subject><subject>Heat storage</subject><subject>Phase change materials</subject><subject>Physics</subject><subject>Radiant flux density</subject><subject>Solar chimneys</subject><subject>Solar heating</subject><subject>Solar radiation</subject><subject>Systems design</subject><subject>Test systems</subject><subject>Thermal storage</subject><subject>Thermal utilization</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN9LwzAQgIsoOKd_gwHfhNr8WpM-StE5GSiob0LI2uvasTY1yZT996ZUFEHwXu6O--4Ovig6J_iKYCkTIjiN01mWJpSnIiEJJhRTchBNvieH37WUx9GJcxuMWQgxiV4XnYe11b4xHTIV6mvtABW17taAfA221VvkvLE69G7vPLToo_E1egfrm2IYmq22KK-btoM9WnRobgG62uwcnEZHld46OPvK0-jl9uY5v4uXD_NFfr2MCyo4iSXDJWjGNSe0ms1WLMtYmuqS4wLzQktZZJiDqDLOIDAgVyUnQvOVJGlJUsam0cV4t7fmbQfOq43Z2S68VFQSHrQwKgIlRqqwxjkLlept02q7VwSrQaUaJKlBmBpUKqJGlWHzctxsTP9z-v4xf_oNqr6sAsz-gP978QkA24M5</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fu, Cheng fang</creator><creator>Lu, Mingxu</creator><creator>Zhao, Bo</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230501</creationdate><title>Integration of phase change thermal storage system with vertical solar Chimney In Greenhouse</title><author>Fu, Cheng fang ; Lu, Mingxu ; Zhao, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-830dea34a412f55b399366ad40c04ca88c904e7f943ea41e8bd417a4b816d1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Air flow</topic><topic>Channels</topic><topic>Enthalpy</topic><topic>Greenhouses</topic><topic>Heat</topic><topic>Heat storage</topic><topic>Phase change materials</topic><topic>Physics</topic><topic>Radiant flux density</topic><topic>Solar chimneys</topic><topic>Solar heating</topic><topic>Solar radiation</topic><topic>Systems design</topic><topic>Test systems</topic><topic>Thermal storage</topic><topic>Thermal utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Cheng fang</creatorcontrib><creatorcontrib>Lu, Mingxu</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Cheng fang</au><au>Lu, Mingxu</au><au>Zhao, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of phase change thermal storage system with vertical solar Chimney In Greenhouse</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>2467</volume><issue>1</issue><spage>12021</spage><pages>12021-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The performance stability of the system can be improved by incorporating a solar chimney with a phase-change material (PCM). It is recommended that instead of using the traditional multi-curved trough air collectors for solar greenhouses, a solar phase change thermal storage wall construction system with vertical air channels be employed. Solar thermal utilization of the rear wall. In order to verify feasibility of the construction system, a multi-curved trough air collector test system for solar greenhouse and a phase-change heat storage wall test system with vertical air channels were built respectively. The air velocity in the heater, the air flow parameters (air velocity, air channel spacing, air flow direction) in the sensible heat storage wall layer in the solar greenhouse, etc. The study’s findings indicate that the collector performs at its peak level of total heat absorption when its air velocity is between 1.4 and 1.8 m/s, and that heat absorption rises as solar radiation intensity rises. The suggested system design orientation offers an efficient way to raise the thermal performance of the system with the least amount of work and expense for practical applications.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2467/1/012021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2023-05, Vol.2467 (1), p.12021
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2814467327
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Absorption
Air flow
Channels
Enthalpy
Greenhouses
Heat
Heat storage
Phase change materials
Physics
Radiant flux density
Solar chimneys
Solar heating
Solar radiation
Systems design
Test systems
Thermal storage
Thermal utilization
title Integration of phase change thermal storage system with vertical solar Chimney In Greenhouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20phase%20change%20thermal%20storage%20system%20with%20vertical%20solar%20Chimney%20In%20Greenhouse&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Fu,%20Cheng%20fang&rft.date=2023-05-01&rft.volume=2467&rft.issue=1&rft.spage=12021&rft.pages=12021-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2467/1/012021&rft_dat=%3Cproquest_cross%3E2814467327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814467327&rft_id=info:pmid/&rfr_iscdi=true