Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions

Strengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal‐support interaction due to the numerous surface defects in amor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-05, Vol.33 (21), p.n/a
Hauptverfasser: Wang, Ying, Liu, Jiali, Yuan, Hongjie, Liu, Fan, Hu, Tianjun, Yang, Benqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 33
creator Wang, Ying
Liu, Jiali
Yuan, Hongjie
Liu, Fan
Hu, Tianjun
Yang, Benqun
description Strengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal‐support interaction due to the numerous surface defects in amorphous structure. In this work, a Pd/a‐MnO2 electrocatalyst containing ultrafine and well‐dispersive Pd nanoparticles and amorphous MnO2 nanosheets is successfully synthesized via a simple and rapid wet chemical method. Differing from the crystal counterpart (Pd/c‐MnO2), the flexible structure of amorphous support can be more favorable to electron transfer and further enhance the metal‐support interaction. The synergism between Pd and amorphous MnO2 results in the downshift of the d‐band center, which is beneficial for the desorption of critical intermediates both in oxygen reduction reaction (ORR) and in ethylene glycol oxidation (EGOR). Due to the lower *.OH desorption energy of Pd/a‐MnO2 surface, the rapid dissociation of *OH from Pd facilitates the formation of H2O in ORR, thus demonstrating superior ORR performance comparable to Pt/C. For EGOR, the presence of amorphous MnO2 promotes the formation of adsorbed OH species, which accelerates the desorption of intermediate CO from Pd sites, and thus exhibits excellent EGOR activity and stability. A new ultrafine and well‐dispersive Pd nanoparticles anchored on amorphous MnO2 nanosheets (Pd/a‐MnO2) is successfully synthesized via a simple wet chemical method. The synergistic effect between Pd and defective MnO2 favors the desorption of critical intermediates both in oxygen reduction reaction and ethylene glycol oxidation reaction, where Pd/a‐MnO2 exhibits superior electrocatalytic activity and stability.
doi_str_mv 10.1002/adfm.202211909
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2814349112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814349112</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2339-f2cf6b6a8bd3709339b2ef264b0d82a3c3ce458ac54687ba98a3b897f580c6823</originalsourceid><addsrcrecordid>eNo9UVtPwjAUXowmIvrqcxOfwV7G1j0SBCQBMSiJb0vXnsHIaGdbgvtF_k03MDydy3c5J_mC4JHgPsGYPguV7_sUU0pIgpOroEMiEvUYpvz60pOv2-DOuR3GJI5Z2Al-P7w1eoPGJci2KySaaQ9WSF8YjTLwRwCNhntjq605OLTQS4rehDZuC-AdElqhdemtyAsN6F2dsEpYX8gSHPLmKKxCY70VWoJCy5960_itQB3OF1r92G_rEhr5tKylKRtSocQJXcH5EXcf3OSidPDwX7vBejL-HL325svpbDSc9yrKWNLLqcyjLBI8UyzGSbPKKOQ0CjOsOBVMMgnhgAs5CCMeZyLhgmU8ifMBxzLilHWDp7NvZc33AZxPd-ZgdXMypZyELEwIaVnJmXUsSqjTyhZ7YeuU4LRNIm2TSC9JpMOXyeIysT_ri4LF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814349112</pqid></control><display><type>article</type><title>Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Ying ; Liu, Jiali ; Yuan, Hongjie ; Liu, Fan ; Hu, Tianjun ; Yang, Benqun</creator><creatorcontrib>Wang, Ying ; Liu, Jiali ; Yuan, Hongjie ; Liu, Fan ; Hu, Tianjun ; Yang, Benqun</creatorcontrib><description>Strengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal‐support interaction due to the numerous surface defects in amorphous structure. In this work, a Pd/a‐MnO2 electrocatalyst containing ultrafine and well‐dispersive Pd nanoparticles and amorphous MnO2 nanosheets is successfully synthesized via a simple and rapid wet chemical method. Differing from the crystal counterpart (Pd/c‐MnO2), the flexible structure of amorphous support can be more favorable to electron transfer and further enhance the metal‐support interaction. The synergism between Pd and amorphous MnO2 results in the downshift of the d‐band center, which is beneficial for the desorption of critical intermediates both in oxygen reduction reaction (ORR) and in ethylene glycol oxidation (EGOR). Due to the lower *.OH desorption energy of Pd/a‐MnO2 surface, the rapid dissociation of *OH from Pd facilitates the formation of H2O in ORR, thus demonstrating superior ORR performance comparable to Pt/C. For EGOR, the presence of amorphous MnO2 promotes the formation of adsorbed OH species, which accelerates the desorption of intermediate CO from Pd sites, and thus exhibits excellent EGOR activity and stability. A new ultrafine and well‐dispersive Pd nanoparticles anchored on amorphous MnO2 nanosheets (Pd/a‐MnO2) is successfully synthesized via a simple wet chemical method. The synergistic effect between Pd and defective MnO2 favors the desorption of critical intermediates both in oxygen reduction reaction and ethylene glycol oxidation reaction, where Pd/a‐MnO2 exhibits superior electrocatalytic activity and stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202211909</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Amorphization ; amorphous oxide ; Amorphous structure ; Chemical reduction ; Crystal defects ; Desorption ; Electrocatalysts ; Electron transfer ; Ethylene glycol ; ethylene glycol oxidation ; Flexible structures ; Manganese dioxide ; Materials science ; Nanoparticles ; Nanosheets ; Noble metals ; Oxidation ; oxygen reduction reaction ; Oxygen reduction reactions ; Palladium ; Surface defects ; synergetic effects ; Ultrafines</subject><ispartof>Advanced functional materials, 2023-05, Vol.33 (21), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9903-147X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202211909$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202211909$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Liu, Jiali</creatorcontrib><creatorcontrib>Yuan, Hongjie</creatorcontrib><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Hu, Tianjun</creatorcontrib><creatorcontrib>Yang, Benqun</creatorcontrib><title>Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions</title><title>Advanced functional materials</title><description>Strengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal‐support interaction due to the numerous surface defects in amorphous structure. In this work, a Pd/a‐MnO2 electrocatalyst containing ultrafine and well‐dispersive Pd nanoparticles and amorphous MnO2 nanosheets is successfully synthesized via a simple and rapid wet chemical method. Differing from the crystal counterpart (Pd/c‐MnO2), the flexible structure of amorphous support can be more favorable to electron transfer and further enhance the metal‐support interaction. The synergism between Pd and amorphous MnO2 results in the downshift of the d‐band center, which is beneficial for the desorption of critical intermediates both in oxygen reduction reaction (ORR) and in ethylene glycol oxidation (EGOR). Due to the lower *.OH desorption energy of Pd/a‐MnO2 surface, the rapid dissociation of *OH from Pd facilitates the formation of H2O in ORR, thus demonstrating superior ORR performance comparable to Pt/C. For EGOR, the presence of amorphous MnO2 promotes the formation of adsorbed OH species, which accelerates the desorption of intermediate CO from Pd sites, and thus exhibits excellent EGOR activity and stability. A new ultrafine and well‐dispersive Pd nanoparticles anchored on amorphous MnO2 nanosheets (Pd/a‐MnO2) is successfully synthesized via a simple wet chemical method. The synergistic effect between Pd and defective MnO2 favors the desorption of critical intermediates both in oxygen reduction reaction and ethylene glycol oxidation reaction, where Pd/a‐MnO2 exhibits superior electrocatalytic activity and stability.</description><subject>Amorphization</subject><subject>amorphous oxide</subject><subject>Amorphous structure</subject><subject>Chemical reduction</subject><subject>Crystal defects</subject><subject>Desorption</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Ethylene glycol</subject><subject>ethylene glycol oxidation</subject><subject>Flexible structures</subject><subject>Manganese dioxide</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Palladium</subject><subject>Surface defects</subject><subject>synergetic effects</subject><subject>Ultrafines</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UVtPwjAUXowmIvrqcxOfwV7G1j0SBCQBMSiJb0vXnsHIaGdbgvtF_k03MDydy3c5J_mC4JHgPsGYPguV7_sUU0pIgpOroEMiEvUYpvz60pOv2-DOuR3GJI5Z2Al-P7w1eoPGJci2KySaaQ9WSF8YjTLwRwCNhntjq605OLTQS4rehDZuC-AdElqhdemtyAsN6F2dsEpYX8gSHPLmKKxCY70VWoJCy5960_itQB3OF1r92G_rEhr5tKylKRtSocQJXcH5EXcf3OSidPDwX7vBejL-HL325svpbDSc9yrKWNLLqcyjLBI8UyzGSbPKKOQ0CjOsOBVMMgnhgAs5CCMeZyLhgmU8ifMBxzLilHWDp7NvZc33AZxPd-ZgdXMypZyELEwIaVnJmXUsSqjTyhZ7YeuU4LRNIm2TSC9JpMOXyeIysT_ri4LF</recordid><startdate>20230517</startdate><enddate>20230517</enddate><creator>Wang, Ying</creator><creator>Liu, Jiali</creator><creator>Yuan, Hongjie</creator><creator>Liu, Fan</creator><creator>Hu, Tianjun</creator><creator>Yang, Benqun</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9903-147X</orcidid></search><sort><creationdate>20230517</creationdate><title>Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions</title><author>Wang, Ying ; Liu, Jiali ; Yuan, Hongjie ; Liu, Fan ; Hu, Tianjun ; Yang, Benqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2339-f2cf6b6a8bd3709339b2ef264b0d82a3c3ce458ac54687ba98a3b897f580c6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphization</topic><topic>amorphous oxide</topic><topic>Amorphous structure</topic><topic>Chemical reduction</topic><topic>Crystal defects</topic><topic>Desorption</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Ethylene glycol</topic><topic>ethylene glycol oxidation</topic><topic>Flexible structures</topic><topic>Manganese dioxide</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Palladium</topic><topic>Surface defects</topic><topic>synergetic effects</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Liu, Jiali</creatorcontrib><creatorcontrib>Yuan, Hongjie</creatorcontrib><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Hu, Tianjun</creatorcontrib><creatorcontrib>Yang, Benqun</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying</au><au>Liu, Jiali</au><au>Yuan, Hongjie</au><au>Liu, Fan</au><au>Hu, Tianjun</au><au>Yang, Benqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions</atitle><jtitle>Advanced functional materials</jtitle><date>2023-05-17</date><risdate>2023</risdate><volume>33</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Strengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal‐support interaction due to the numerous surface defects in amorphous structure. In this work, a Pd/a‐MnO2 electrocatalyst containing ultrafine and well‐dispersive Pd nanoparticles and amorphous MnO2 nanosheets is successfully synthesized via a simple and rapid wet chemical method. Differing from the crystal counterpart (Pd/c‐MnO2), the flexible structure of amorphous support can be more favorable to electron transfer and further enhance the metal‐support interaction. The synergism between Pd and amorphous MnO2 results in the downshift of the d‐band center, which is beneficial for the desorption of critical intermediates both in oxygen reduction reaction (ORR) and in ethylene glycol oxidation (EGOR). Due to the lower *.OH desorption energy of Pd/a‐MnO2 surface, the rapid dissociation of *OH from Pd facilitates the formation of H2O in ORR, thus demonstrating superior ORR performance comparable to Pt/C. For EGOR, the presence of amorphous MnO2 promotes the formation of adsorbed OH species, which accelerates the desorption of intermediate CO from Pd sites, and thus exhibits excellent EGOR activity and stability. A new ultrafine and well‐dispersive Pd nanoparticles anchored on amorphous MnO2 nanosheets (Pd/a‐MnO2) is successfully synthesized via a simple wet chemical method. The synergistic effect between Pd and defective MnO2 favors the desorption of critical intermediates both in oxygen reduction reaction and ethylene glycol oxidation reaction, where Pd/a‐MnO2 exhibits superior electrocatalytic activity and stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202211909</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9903-147X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-05, Vol.33 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2814349112
source Wiley Online Library Journals Frontfile Complete
subjects Amorphization
amorphous oxide
Amorphous structure
Chemical reduction
Crystal defects
Desorption
Electrocatalysts
Electron transfer
Ethylene glycol
ethylene glycol oxidation
Flexible structures
Manganese dioxide
Materials science
Nanoparticles
Nanosheets
Noble metals
Oxidation
oxygen reduction reaction
Oxygen reduction reactions
Palladium
Surface defects
synergetic effects
Ultrafines
title Strong Electronic Interaction between Amorphous MnO2 Nanosheets and Ultrafine Pd Nanoparticles toward Enhanced Oxygen Reduction and Ethylene Glycol Oxidation Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Electronic%20Interaction%20between%20Amorphous%20MnO2%20Nanosheets%20and%20Ultrafine%20Pd%20Nanoparticles%20toward%20Enhanced%20Oxygen%20Reduction%20and%20Ethylene%20Glycol%20Oxidation%20Reactions&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Ying&rft.date=2023-05-17&rft.volume=33&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202211909&rft_dat=%3Cproquest_wiley%3E2814349112%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814349112&rft_id=info:pmid/&rfr_iscdi=true