Solar‐Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure

The rational design of economic and high‐performance electrocatalytic water‐splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion‐assisted electrocatalytic process provides a promising novel approach to effectively boost it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-05, Vol.33 (21), p.n/a
Hauptverfasser: Lu, Yi, Zhang, Hao, Wang, Yida, Zhu, Xiaorong, Xiao, Weiping, Xu, Haolan, Li, Gaoran, Li, Yafei, Fan, Deqi, Zeng, Haibo, Chen, Zupeng, Yang, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 33
creator Lu, Yi
Zhang, Hao
Wang, Yida
Zhu, Xiaorong
Xiao, Weiping
Xu, Haolan
Li, Gaoran
Li, Yafei
Fan, Deqi
Zeng, Haibo
Chen, Zupeng
Yang, Xiaofei
description The rational design of economic and high‐performance electrocatalytic water‐splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion‐assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self‐sustained water‐splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1‐xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar‐powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all‐in‐one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide‐based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH− enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting. An active interfacial solar evaporation‐accelerated electrocatalytic heterostructure assembled from perovskite oxide and 2D Ti3C2Tx MXene on Ni foam and its implementation in the water‐splitting process are reported. The all‐in‐one integrated electrocatalyst demonstrates much higher activity for solar‐powered interfacial water evaporation and simultaneously shows remarkable electrocatalytic performance toward the oxygen evolution reaction and hydrogen evolution reaction.
doi_str_mv 10.1002/adfm.202215061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2814349107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814349107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-73af6ed691846b1bd5491fd3345b85e662e25edc4d1b7020061126e16fe812b13</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhRujiYhuXU_iujB32k7LkvAjJBBM0MhuMp3emsHS4nSKsuMRfEafxCEYXbq6P_nOuTfH826BdoBS1pVZvukwyhhElMOZ1wIO3A8oS85_e1hdeld1vaYU4jgIW95hWRXSfB0-h0bvsCTT0qLJpdKyIKOd3FZGWl2VpK8UFugGzMioQGVNpaSVxd5qRZ7d2pDlttDW6vKFOJ4NyQOaale_aotk8aEz7M5XWCKZoIOr2ppG2cbgtXeRy6LGm5_a9p7Go8fBxJ8t7qeD_sxXAcTgx4HMOWa8B0nIU0izKOxBngVBGKVJhJwzZBFmKswgjSmjLgFgHIHnmABLIWh7dyffraneGqytWFeNKd1JwRIIA2dHY0d1TpRyL9YGc7E1eiPNXgAVx5TFMWXxm7IT9E6Cd13g_h9a9Ifj-Z_2GzCzg2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814349107</pqid></control><display><type>article</type><title>Solar‐Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lu, Yi ; Zhang, Hao ; Wang, Yida ; Zhu, Xiaorong ; Xiao, Weiping ; Xu, Haolan ; Li, Gaoran ; Li, Yafei ; Fan, Deqi ; Zeng, Haibo ; Chen, Zupeng ; Yang, Xiaofei</creator><creatorcontrib>Lu, Yi ; Zhang, Hao ; Wang, Yida ; Zhu, Xiaorong ; Xiao, Weiping ; Xu, Haolan ; Li, Gaoran ; Li, Yafei ; Fan, Deqi ; Zeng, Haibo ; Chen, Zupeng ; Yang, Xiaofei</creatorcontrib><description>The rational design of economic and high‐performance electrocatalytic water‐splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion‐assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self‐sustained water‐splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1‐xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar‐powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all‐in‐one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide‐based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH− enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting. An active interfacial solar evaporation‐accelerated electrocatalytic heterostructure assembled from perovskite oxide and 2D Ti3C2Tx MXene on Ni foam and its implementation in the water‐splitting process are reported. The all‐in‐one integrated electrocatalyst demonstrates much higher activity for solar‐powered interfacial water evaporation and simultaneously shows remarkable electrocatalytic performance toward the oxygen evolution reaction and hydrogen evolution reaction.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202215061</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D MXenes ; Catalysts ; Density functional theory ; Electrocatalysts ; electrocatalytic water splitting ; Electron transfer ; Energy conversion ; Evaporation ; Heterostructures ; interfacial solar evaporation ; Materials science ; Metal foams ; MXenes ; Oxygen evolution reactions ; perovskite oxides ; Perovskites ; Water splitting</subject><ispartof>Advanced functional materials, 2023-05, Vol.33 (21), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-73af6ed691846b1bd5491fd3345b85e662e25edc4d1b7020061126e16fe812b13</citedby><cites>FETCH-LOGICAL-c3171-73af6ed691846b1bd5491fd3345b85e662e25edc4d1b7020061126e16fe812b13</cites><orcidid>0000-0003-1972-4562 ; 0000-0002-0281-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202215061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202215061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Yida</creatorcontrib><creatorcontrib>Zhu, Xiaorong</creatorcontrib><creatorcontrib>Xiao, Weiping</creatorcontrib><creatorcontrib>Xu, Haolan</creatorcontrib><creatorcontrib>Li, Gaoran</creatorcontrib><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>Fan, Deqi</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><creatorcontrib>Chen, Zupeng</creatorcontrib><creatorcontrib>Yang, Xiaofei</creatorcontrib><title>Solar‐Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure</title><title>Advanced functional materials</title><description>The rational design of economic and high‐performance electrocatalytic water‐splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion‐assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self‐sustained water‐splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1‐xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar‐powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all‐in‐one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide‐based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH− enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting. An active interfacial solar evaporation‐accelerated electrocatalytic heterostructure assembled from perovskite oxide and 2D Ti3C2Tx MXene on Ni foam and its implementation in the water‐splitting process are reported. The all‐in‐one integrated electrocatalyst demonstrates much higher activity for solar‐powered interfacial water evaporation and simultaneously shows remarkable electrocatalytic performance toward the oxygen evolution reaction and hydrogen evolution reaction.</description><subject>2D MXenes</subject><subject>Catalysts</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>electrocatalytic water splitting</subject><subject>Electron transfer</subject><subject>Energy conversion</subject><subject>Evaporation</subject><subject>Heterostructures</subject><subject>interfacial solar evaporation</subject><subject>Materials science</subject><subject>Metal foams</subject><subject>MXenes</subject><subject>Oxygen evolution reactions</subject><subject>perovskite oxides</subject><subject>Perovskites</subject><subject>Water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAUhRujiYhuXU_iujB32k7LkvAjJBBM0MhuMp3emsHS4nSKsuMRfEafxCEYXbq6P_nOuTfH826BdoBS1pVZvukwyhhElMOZ1wIO3A8oS85_e1hdeld1vaYU4jgIW95hWRXSfB0-h0bvsCTT0qLJpdKyIKOd3FZGWl2VpK8UFugGzMioQGVNpaSVxd5qRZ7d2pDlttDW6vKFOJ4NyQOaale_aotk8aEz7M5XWCKZoIOr2ppG2cbgtXeRy6LGm5_a9p7Go8fBxJ8t7qeD_sxXAcTgx4HMOWa8B0nIU0izKOxBngVBGKVJhJwzZBFmKswgjSmjLgFgHIHnmABLIWh7dyffraneGqytWFeNKd1JwRIIA2dHY0d1TpRyL9YGc7E1eiPNXgAVx5TFMWXxm7IT9E6Cd13g_h9a9Ifj-Z_2GzCzg2s</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Lu, Yi</creator><creator>Zhang, Hao</creator><creator>Wang, Yida</creator><creator>Zhu, Xiaorong</creator><creator>Xiao, Weiping</creator><creator>Xu, Haolan</creator><creator>Li, Gaoran</creator><creator>Li, Yafei</creator><creator>Fan, Deqi</creator><creator>Zeng, Haibo</creator><creator>Chen, Zupeng</creator><creator>Yang, Xiaofei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1972-4562</orcidid><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></search><sort><creationdate>20230501</creationdate><title>Solar‐Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure</title><author>Lu, Yi ; Zhang, Hao ; Wang, Yida ; Zhu, Xiaorong ; Xiao, Weiping ; Xu, Haolan ; Li, Gaoran ; Li, Yafei ; Fan, Deqi ; Zeng, Haibo ; Chen, Zupeng ; Yang, Xiaofei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-73af6ed691846b1bd5491fd3345b85e662e25edc4d1b7020061126e16fe812b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D MXenes</topic><topic>Catalysts</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>electrocatalytic water splitting</topic><topic>Electron transfer</topic><topic>Energy conversion</topic><topic>Evaporation</topic><topic>Heterostructures</topic><topic>interfacial solar evaporation</topic><topic>Materials science</topic><topic>Metal foams</topic><topic>MXenes</topic><topic>Oxygen evolution reactions</topic><topic>perovskite oxides</topic><topic>Perovskites</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yi</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Yida</creatorcontrib><creatorcontrib>Zhu, Xiaorong</creatorcontrib><creatorcontrib>Xiao, Weiping</creatorcontrib><creatorcontrib>Xu, Haolan</creatorcontrib><creatorcontrib>Li, Gaoran</creatorcontrib><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>Fan, Deqi</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><creatorcontrib>Chen, Zupeng</creatorcontrib><creatorcontrib>Yang, Xiaofei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yi</au><au>Zhang, Hao</au><au>Wang, Yida</au><au>Zhu, Xiaorong</au><au>Xiao, Weiping</au><au>Xu, Haolan</au><au>Li, Gaoran</au><au>Li, Yafei</au><au>Fan, Deqi</au><au>Zeng, Haibo</au><au>Chen, Zupeng</au><au>Yang, Xiaofei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar‐Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure</atitle><jtitle>Advanced functional materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>33</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rational design of economic and high‐performance electrocatalytic water‐splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion‐assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self‐sustained water‐splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1‐xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar‐powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all‐in‐one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide‐based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH− enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting. An active interfacial solar evaporation‐accelerated electrocatalytic heterostructure assembled from perovskite oxide and 2D Ti3C2Tx MXene on Ni foam and its implementation in the water‐splitting process are reported. The all‐in‐one integrated electrocatalyst demonstrates much higher activity for solar‐powered interfacial water evaporation and simultaneously shows remarkable electrocatalytic performance toward the oxygen evolution reaction and hydrogen evolution reaction.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202215061</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1972-4562</orcidid><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-05, Vol.33 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2814349107
source Wiley Online Library - AutoHoldings Journals
subjects 2D MXenes
Catalysts
Density functional theory
Electrocatalysts
electrocatalytic water splitting
Electron transfer
Energy conversion
Evaporation
Heterostructures
interfacial solar evaporation
Materials science
Metal foams
MXenes
Oxygen evolution reactions
perovskite oxides
Perovskites
Water splitting
title Solar‐Driven Interfacial Evaporation Accelerated Electrocatalytic Water Splitting on 2D Perovskite Oxide/MXene Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven%20Interfacial%20Evaporation%20Accelerated%20Electrocatalytic%20Water%20Splitting%20on%202D%20Perovskite%20Oxide/MXene%20Heterostructure&rft.jtitle=Advanced%20functional%20materials&rft.au=Lu,%20Yi&rft.date=2023-05-01&rft.volume=33&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202215061&rft_dat=%3Cproquest_cross%3E2814349107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814349107&rft_id=info:pmid/&rfr_iscdi=true