Imbalanced Data Classification Based on Cost Sensitivity Penalized AdaBoost Algorithm
How to improve the classification accuracy of minority instances is one of the hot topics in machine learning research. In order to solve the problem of imbalanced data classification, a penalized AdaBoost algorithm based on cost sensitivity is proposed. In the penalized Adaboost algorithm, a new ad...
Gespeichert in:
Veröffentlicht in: | Transactions of Nanjing University of Aeronautics & Astronautics 2023-01, Vol.40 (2), p.339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 339 |
container_title | Transactions of Nanjing University of Aeronautics & Astronautics |
container_volume | 40 |
creator | Lu, Shuxia Zhang, Zhenlian Zhai, Junhai |
description | How to improve the classification accuracy of minority instances is one of the hot topics in machine learning research. In order to solve the problem of imbalanced data classification, a penalized AdaBoost algorithm based on cost sensitivity is proposed. In the penalized Adaboost algorithm, a new adaptive cost sensitive function is introduced, which gives higher cost value to the minority instances and the misclassified minority instances. It can obtain a larger average margin by introducing penalty mechanism. The weighted support vector machine(SVM) optimization model is used as the base classifier. The stochastic variance reduced gradient(SVRG) with variance reduction method is used to solve the optimization model. The comparative experiments show that the proposed algorithm is not only superior to other algorithms in terms of geometric-mean(G-mean) and area under ROC curve(AUC), but also can obtain a larger average margin by introducing penalty mechanism, which fully demonstrates the effectiveness of the p |
doi_str_mv | 10.16356/j.1005-2615.2023.02.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2814051469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814051469</sourcerecordid><originalsourceid>FETCH-proquest_journals_28140514693</originalsourceid><addsrcrecordid>eNqNi9EOwTAYhXtBYmHv0MS1-dtt3VwyhDsJrpcfRZdaWUvC0yvxAJKTnJPznUMIZRAxEadiWEUMIB1wwdKIA48j4F7QIsG3Z4xDh4TWqh2AyCDOchGQ7fKyQ431Xh7oFB3SQqOfHNUenTI1naD1xIfCWEfXsrbKqYdyT7qSNWr18nR8wIn54LE-mUa586VH2kfUVoY_75L-fLYpFoNrY253aV1ZmXvj_7bkOUsgZYkYxf-t3nV-R0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814051469</pqid></control><display><type>article</type><title>Imbalanced Data Classification Based on Cost Sensitivity Penalized AdaBoost Algorithm</title><source>Alma/SFX Local Collection</source><creator>Lu, Shuxia ; Zhang, Zhenlian ; Zhai, Junhai</creator><creatorcontrib>Lu, Shuxia ; Zhang, Zhenlian ; Zhai, Junhai</creatorcontrib><description>How to improve the classification accuracy of minority instances is one of the hot topics in machine learning research. In order to solve the problem of imbalanced data classification, a penalized AdaBoost algorithm based on cost sensitivity is proposed. In the penalized Adaboost algorithm, a new adaptive cost sensitive function is introduced, which gives higher cost value to the minority instances and the misclassified minority instances. It can obtain a larger average margin by introducing penalty mechanism. The weighted support vector machine(SVM) optimization model is used as the base classifier. The stochastic variance reduced gradient(SVRG) with variance reduction method is used to solve the optimization model. The comparative experiments show that the proposed algorithm is not only superior to other algorithms in terms of geometric-mean(G-mean) and area under ROC curve(AUC), but also can obtain a larger average margin by introducing penalty mechanism, which fully demonstrates the effectiveness of the p</description><identifier>ISSN: 1005-1120</identifier><identifier>DOI: 10.16356/j.1005-2615.2023.02.020</identifier><language>chi</language><publisher>Nanjing: Nanjing University of Aeronautics and Astronautics</publisher><subject>Adaptive algorithms ; Algorithms ; Classification ; Machine learning ; Mean ; Optimization models ; Sensitivity ; Support vector machines</subject><ispartof>Transactions of Nanjing University of Aeronautics & Astronautics, 2023-01, Vol.40 (2), p.339</ispartof><rights>Copyright Nanjing University of Aeronautics and Astronautics 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Shuxia</creatorcontrib><creatorcontrib>Zhang, Zhenlian</creatorcontrib><creatorcontrib>Zhai, Junhai</creatorcontrib><title>Imbalanced Data Classification Based on Cost Sensitivity Penalized AdaBoost Algorithm</title><title>Transactions of Nanjing University of Aeronautics & Astronautics</title><description>How to improve the classification accuracy of minority instances is one of the hot topics in machine learning research. In order to solve the problem of imbalanced data classification, a penalized AdaBoost algorithm based on cost sensitivity is proposed. In the penalized Adaboost algorithm, a new adaptive cost sensitive function is introduced, which gives higher cost value to the minority instances and the misclassified minority instances. It can obtain a larger average margin by introducing penalty mechanism. The weighted support vector machine(SVM) optimization model is used as the base classifier. The stochastic variance reduced gradient(SVRG) with variance reduction method is used to solve the optimization model. The comparative experiments show that the proposed algorithm is not only superior to other algorithms in terms of geometric-mean(G-mean) and area under ROC curve(AUC), but also can obtain a larger average margin by introducing penalty mechanism, which fully demonstrates the effectiveness of the p</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Machine learning</subject><subject>Mean</subject><subject>Optimization models</subject><subject>Sensitivity</subject><subject>Support vector machines</subject><issn>1005-1120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNi9EOwTAYhXtBYmHv0MS1-dtt3VwyhDsJrpcfRZdaWUvC0yvxAJKTnJPznUMIZRAxEadiWEUMIB1wwdKIA48j4F7QIsG3Z4xDh4TWqh2AyCDOchGQ7fKyQ431Xh7oFB3SQqOfHNUenTI1naD1xIfCWEfXsrbKqYdyT7qSNWr18nR8wIn54LE-mUa586VH2kfUVoY_75L-fLYpFoNrY253aV1ZmXvj_7bkOUsgZYkYxf-t3nV-R0w</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lu, Shuxia</creator><creator>Zhang, Zhenlian</creator><creator>Zhai, Junhai</creator><general>Nanjing University of Aeronautics and Astronautics</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230101</creationdate><title>Imbalanced Data Classification Based on Cost Sensitivity Penalized AdaBoost Algorithm</title><author>Lu, Shuxia ; Zhang, Zhenlian ; Zhai, Junhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28140514693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Machine learning</topic><topic>Mean</topic><topic>Optimization models</topic><topic>Sensitivity</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shuxia</creatorcontrib><creatorcontrib>Zhang, Zhenlian</creatorcontrib><creatorcontrib>Zhai, Junhai</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of Nanjing University of Aeronautics & Astronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shuxia</au><au>Zhang, Zhenlian</au><au>Zhai, Junhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imbalanced Data Classification Based on Cost Sensitivity Penalized AdaBoost Algorithm</atitle><jtitle>Transactions of Nanjing University of Aeronautics & Astronautics</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>40</volume><issue>2</issue><spage>339</spage><pages>339-</pages><issn>1005-1120</issn><abstract>How to improve the classification accuracy of minority instances is one of the hot topics in machine learning research. In order to solve the problem of imbalanced data classification, a penalized AdaBoost algorithm based on cost sensitivity is proposed. In the penalized Adaboost algorithm, a new adaptive cost sensitive function is introduced, which gives higher cost value to the minority instances and the misclassified minority instances. It can obtain a larger average margin by introducing penalty mechanism. The weighted support vector machine(SVM) optimization model is used as the base classifier. The stochastic variance reduced gradient(SVRG) with variance reduction method is used to solve the optimization model. The comparative experiments show that the proposed algorithm is not only superior to other algorithms in terms of geometric-mean(G-mean) and area under ROC curve(AUC), but also can obtain a larger average margin by introducing penalty mechanism, which fully demonstrates the effectiveness of the p</abstract><cop>Nanjing</cop><pub>Nanjing University of Aeronautics and Astronautics</pub><doi>10.16356/j.1005-2615.2023.02.020</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1120 |
ispartof | Transactions of Nanjing University of Aeronautics & Astronautics, 2023-01, Vol.40 (2), p.339 |
issn | 1005-1120 |
language | chi |
recordid | cdi_proquest_journals_2814051469 |
source | Alma/SFX Local Collection |
subjects | Adaptive algorithms Algorithms Classification Machine learning Mean Optimization models Sensitivity Support vector machines |
title | Imbalanced Data Classification Based on Cost Sensitivity Penalized AdaBoost Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imbalanced%20Data%20Classification%20Based%20on%20Cost%20Sensitivity%20Penalized%20AdaBoost%20Algorithm&rft.jtitle=Transactions%20of%20Nanjing%20University%20of%20Aeronautics%20&%20Astronautics&rft.au=Lu,%20Shuxia&rft.date=2023-01-01&rft.volume=40&rft.issue=2&rft.spage=339&rft.pages=339-&rft.issn=1005-1120&rft_id=info:doi/10.16356/j.1005-2615.2023.02.020&rft_dat=%3Cproquest%3E2814051469%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814051469&rft_id=info:pmid/&rfr_iscdi=true |