Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau

Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-08, Vol.26 (15), p.5637-5654
Hauptverfasser: Zhang, Yuwei, Wang, Donghai, Zhai, Panmao, Gu, Guojun, He, Jinhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5654
container_issue 15
container_start_page 5637
container_title Journal of climate
container_volume 26
creator Zhang, Yuwei
Wang, Donghai
Zhai, Panmao
Gu, Guojun
He, Jinhai
description Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.
doi_str_mv 10.1175/jcli-d-12-00574.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2813974590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26192717</jstor_id><sourcerecordid>26192717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</originalsourceid><addsrcrecordid>eNp9kEtrHDEQhEWIIRvbPyCHgMDkOE63Rq85mnUeDgs2eO0cRa9WizVMRhNJa8i_9zhrkptPDVVfFXQx9gHhHNGoz70fYrNtUDQAyshzfMMWqAQ0IKV4yxZgO9lYo9Q79r6UHgCFBliw_naiGmngl7HUHDf7GtNYOI1bfhuopHG27ilHOuhpx9c5TalMDyFHz39SDXkGppT5Mo01jJWnx1mqD4Gv4yZUGvnNMFO0P2FHOxpKOH25x-zu65f18nuzuv52tbxYNV5qURutWtECetiQ0a20BEqBEBZUq9DSVtLWW03Beo3YbWyHQiggJZUOUgTdHrOzQ--U0-99KNX1aZ_nR4oTFtvOSNXBaxRKiWLeDp678ED5nErJYeemHH9R_uMQ3PPw7sdydeUuHQr3d3iHc-bTSzMVT8Mu0-hj-RcUxiqJRszcxwPXl5ryf19jJwya9gmkZIvP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441252006</pqid></control><display><type>article</type><title>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Yuwei ; Wang, Donghai ; Zhai, Panmao ; Gu, Guojun ; He, Jinhai</creator><creatorcontrib>Zhang, Yuwei ; Wang, Donghai ; Zhai, Panmao ; Gu, Guojun ; He, Jinhai</creatorcontrib><description>Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-12-00574.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric Infrared Sounder ; Atmospherics ; Cold season ; Datasets ; Deep layer ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Gauges ; Gradients ; Ground stations ; Inhomogeneity ; Mean precipitation ; Meteorological satellites ; Meteorology ; Moisture effects ; Plateaus ; Precipitable water ; Precipitation ; Rain ; Rainy seasons ; Rivers ; Satellites ; Seasonal distribution ; Seasonal variation ; Seasonal variations ; Seasons ; Sounding ; Spatial distribution ; Stratosphere ; Troposphere ; Tropospheric water vapor ; Upper troposphere ; Vapors ; Warm seasons ; Water in the atmosphere (humidity, clouds, evaporation, precipitation) ; Water vapor ; Water vapor content ; Water vapor flux ; Water vapour</subject><ispartof>Journal of climate, 2013-08, Vol.26 (15), p.5637-5654</ispartof><rights>2013 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Aug 1, 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</citedby><cites>FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26192717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26192717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27854172$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuwei</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Zhai, Panmao</creatorcontrib><creatorcontrib>Gu, Guojun</creatorcontrib><creatorcontrib>He, Jinhai</creatorcontrib><title>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</title><title>Journal of climate</title><description>Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.</description><subject>Atmosphere</subject><subject>Atmospheric Infrared Sounder</subject><subject>Atmospherics</subject><subject>Cold season</subject><subject>Datasets</subject><subject>Deep layer</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Gauges</subject><subject>Gradients</subject><subject>Ground stations</subject><subject>Inhomogeneity</subject><subject>Mean precipitation</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Moisture effects</subject><subject>Plateaus</subject><subject>Precipitable water</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainy seasons</subject><subject>Rivers</subject><subject>Satellites</subject><subject>Seasonal distribution</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Sounding</subject><subject>Spatial distribution</subject><subject>Stratosphere</subject><subject>Troposphere</subject><subject>Tropospheric water vapor</subject><subject>Upper troposphere</subject><subject>Vapors</subject><subject>Warm seasons</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><subject>Water vapor</subject><subject>Water vapor content</subject><subject>Water vapor flux</subject><subject>Water vapour</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtrHDEQhEWIIRvbPyCHgMDkOE63Rq85mnUeDgs2eO0cRa9WizVMRhNJa8i_9zhrkptPDVVfFXQx9gHhHNGoz70fYrNtUDQAyshzfMMWqAQ0IKV4yxZgO9lYo9Q79r6UHgCFBliw_naiGmngl7HUHDf7GtNYOI1bfhuopHG27ilHOuhpx9c5TalMDyFHz39SDXkGppT5Mo01jJWnx1mqD4Gv4yZUGvnNMFO0P2FHOxpKOH25x-zu65f18nuzuv52tbxYNV5qURutWtECetiQ0a20BEqBEBZUq9DSVtLWW03Beo3YbWyHQiggJZUOUgTdHrOzQ--U0-99KNX1aZ_nR4oTFtvOSNXBaxRKiWLeDp678ED5nErJYeemHH9R_uMQ3PPw7sdydeUuHQr3d3iHc-bTSzMVT8Mu0-hj-RcUxiqJRszcxwPXl5ryf19jJwya9gmkZIvP</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Zhang, Yuwei</creator><creator>Wang, Donghai</creator><creator>Zhai, Panmao</creator><creator>Gu, Guojun</creator><creator>He, Jinhai</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130801</creationdate><title>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</title><author>Zhang, Yuwei ; Wang, Donghai ; Zhai, Panmao ; Gu, Guojun ; He, Jinhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmosphere</topic><topic>Atmospheric Infrared Sounder</topic><topic>Atmospherics</topic><topic>Cold season</topic><topic>Datasets</topic><topic>Deep layer</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Gauges</topic><topic>Gradients</topic><topic>Ground stations</topic><topic>Inhomogeneity</topic><topic>Mean precipitation</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Moisture effects</topic><topic>Plateaus</topic><topic>Precipitable water</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainy seasons</topic><topic>Rivers</topic><topic>Satellites</topic><topic>Seasonal distribution</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Sounding</topic><topic>Spatial distribution</topic><topic>Stratosphere</topic><topic>Troposphere</topic><topic>Tropospheric water vapor</topic><topic>Upper troposphere</topic><topic>Vapors</topic><topic>Warm seasons</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><topic>Water vapor</topic><topic>Water vapor content</topic><topic>Water vapor flux</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuwei</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Zhai, Panmao</creatorcontrib><creatorcontrib>Gu, Guojun</creatorcontrib><creatorcontrib>He, Jinhai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuwei</au><au>Wang, Donghai</au><au>Zhai, Panmao</au><au>Gu, Guojun</au><au>He, Jinhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</atitle><jtitle>Journal of climate</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>26</volume><issue>15</issue><spage>5637</spage><epage>5654</epage><pages>5637-5654</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-12-00574.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2013-08, Vol.26 (15), p.5637-5654
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2813974590
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Atmosphere
Atmospheric Infrared Sounder
Atmospherics
Cold season
Datasets
Deep layer
Earth, ocean, space
Exact sciences and technology
External geophysics
Gauges
Gradients
Ground stations
Inhomogeneity
Mean precipitation
Meteorological satellites
Meteorology
Moisture effects
Plateaus
Precipitable water
Precipitation
Rain
Rainy seasons
Rivers
Satellites
Seasonal distribution
Seasonal variation
Seasonal variations
Seasons
Sounding
Spatial distribution
Stratosphere
Troposphere
Tropospheric water vapor
Upper troposphere
Vapors
Warm seasons
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
Water vapor
Water vapor content
Water vapor flux
Water vapour
title Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Distributions%20and%20Seasonal%20Variations%20of%20Tropospheric%20Water%20Vapor%20Content%20over%20the%20Tibetan%20Plateau&rft.jtitle=Journal%20of%20climate&rft.au=Zhang,%20Yuwei&rft.date=2013-08-01&rft.volume=26&rft.issue=15&rft.spage=5637&rft.epage=5654&rft.pages=5637-5654&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-12-00574.1&rft_dat=%3Cjstor_proqu%3E26192717%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441252006&rft_id=info:pmid/&rft_jstor_id=26192717&rfr_iscdi=true