Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau
Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). B...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2013-08, Vol.26 (15), p.5637-5654 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5654 |
---|---|
container_issue | 15 |
container_start_page | 5637 |
container_title | Journal of climate |
container_volume | 26 |
creator | Zhang, Yuwei Wang, Donghai Zhai, Panmao Gu, Guojun He, Jinhai |
description | Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation. |
doi_str_mv | 10.1175/jcli-d-12-00574.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2813974590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26192717</jstor_id><sourcerecordid>26192717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</originalsourceid><addsrcrecordid>eNp9kEtrHDEQhEWIIRvbPyCHgMDkOE63Rq85mnUeDgs2eO0cRa9WizVMRhNJa8i_9zhrkptPDVVfFXQx9gHhHNGoz70fYrNtUDQAyshzfMMWqAQ0IKV4yxZgO9lYo9Q79r6UHgCFBliw_naiGmngl7HUHDf7GtNYOI1bfhuopHG27ilHOuhpx9c5TalMDyFHz39SDXkGppT5Mo01jJWnx1mqD4Gv4yZUGvnNMFO0P2FHOxpKOH25x-zu65f18nuzuv52tbxYNV5qURutWtECetiQ0a20BEqBEBZUq9DSVtLWW03Beo3YbWyHQiggJZUOUgTdHrOzQ--U0-99KNX1aZ_nR4oTFtvOSNXBaxRKiWLeDp678ED5nErJYeemHH9R_uMQ3PPw7sdydeUuHQr3d3iHc-bTSzMVT8Mu0-hj-RcUxiqJRszcxwPXl5ryf19jJwya9gmkZIvP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441252006</pqid></control><display><type>article</type><title>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Yuwei ; Wang, Donghai ; Zhai, Panmao ; Gu, Guojun ; He, Jinhai</creator><creatorcontrib>Zhang, Yuwei ; Wang, Donghai ; Zhai, Panmao ; Gu, Guojun ; He, Jinhai</creatorcontrib><description>Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-12-00574.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric Infrared Sounder ; Atmospherics ; Cold season ; Datasets ; Deep layer ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Gauges ; Gradients ; Ground stations ; Inhomogeneity ; Mean precipitation ; Meteorological satellites ; Meteorology ; Moisture effects ; Plateaus ; Precipitable water ; Precipitation ; Rain ; Rainy seasons ; Rivers ; Satellites ; Seasonal distribution ; Seasonal variation ; Seasonal variations ; Seasons ; Sounding ; Spatial distribution ; Stratosphere ; Troposphere ; Tropospheric water vapor ; Upper troposphere ; Vapors ; Warm seasons ; Water in the atmosphere (humidity, clouds, evaporation, precipitation) ; Water vapor ; Water vapor content ; Water vapor flux ; Water vapour</subject><ispartof>Journal of climate, 2013-08, Vol.26 (15), p.5637-5654</ispartof><rights>2013 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Aug 1, 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</citedby><cites>FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26192717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26192717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27854172$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuwei</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Zhai, Panmao</creatorcontrib><creatorcontrib>Gu, Guojun</creatorcontrib><creatorcontrib>He, Jinhai</creatorcontrib><title>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</title><title>Journal of climate</title><description>Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.</description><subject>Atmosphere</subject><subject>Atmospheric Infrared Sounder</subject><subject>Atmospherics</subject><subject>Cold season</subject><subject>Datasets</subject><subject>Deep layer</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Gauges</subject><subject>Gradients</subject><subject>Ground stations</subject><subject>Inhomogeneity</subject><subject>Mean precipitation</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Moisture effects</subject><subject>Plateaus</subject><subject>Precipitable water</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainy seasons</subject><subject>Rivers</subject><subject>Satellites</subject><subject>Seasonal distribution</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Sounding</subject><subject>Spatial distribution</subject><subject>Stratosphere</subject><subject>Troposphere</subject><subject>Tropospheric water vapor</subject><subject>Upper troposphere</subject><subject>Vapors</subject><subject>Warm seasons</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><subject>Water vapor</subject><subject>Water vapor content</subject><subject>Water vapor flux</subject><subject>Water vapour</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtrHDEQhEWIIRvbPyCHgMDkOE63Rq85mnUeDgs2eO0cRa9WizVMRhNJa8i_9zhrkptPDVVfFXQx9gHhHNGoz70fYrNtUDQAyshzfMMWqAQ0IKV4yxZgO9lYo9Q79r6UHgCFBliw_naiGmngl7HUHDf7GtNYOI1bfhuopHG27ilHOuhpx9c5TalMDyFHz39SDXkGppT5Mo01jJWnx1mqD4Gv4yZUGvnNMFO0P2FHOxpKOH25x-zu65f18nuzuv52tbxYNV5qURutWtECetiQ0a20BEqBEBZUq9DSVtLWW03Beo3YbWyHQiggJZUOUgTdHrOzQ--U0-99KNX1aZ_nR4oTFtvOSNXBaxRKiWLeDp678ED5nErJYeemHH9R_uMQ3PPw7sdydeUuHQr3d3iHc-bTSzMVT8Mu0-hj-RcUxiqJRszcxwPXl5ryf19jJwya9gmkZIvP</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Zhang, Yuwei</creator><creator>Wang, Donghai</creator><creator>Zhai, Panmao</creator><creator>Gu, Guojun</creator><creator>He, Jinhai</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130801</creationdate><title>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</title><author>Zhang, Yuwei ; Wang, Donghai ; Zhai, Panmao ; Gu, Guojun ; He, Jinhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6532301c0ba76348a0550228053518ad4adc86ae8c6119b8912250a5456e42e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmosphere</topic><topic>Atmospheric Infrared Sounder</topic><topic>Atmospherics</topic><topic>Cold season</topic><topic>Datasets</topic><topic>Deep layer</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Gauges</topic><topic>Gradients</topic><topic>Ground stations</topic><topic>Inhomogeneity</topic><topic>Mean precipitation</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Moisture effects</topic><topic>Plateaus</topic><topic>Precipitable water</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainy seasons</topic><topic>Rivers</topic><topic>Satellites</topic><topic>Seasonal distribution</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Sounding</topic><topic>Spatial distribution</topic><topic>Stratosphere</topic><topic>Troposphere</topic><topic>Tropospheric water vapor</topic><topic>Upper troposphere</topic><topic>Vapors</topic><topic>Warm seasons</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><topic>Water vapor</topic><topic>Water vapor content</topic><topic>Water vapor flux</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuwei</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><creatorcontrib>Zhai, Panmao</creatorcontrib><creatorcontrib>Gu, Guojun</creatorcontrib><creatorcontrib>He, Jinhai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuwei</au><au>Wang, Donghai</au><au>Zhai, Panmao</au><au>Gu, Guojun</au><au>He, Jinhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau</atitle><jtitle>Journal of climate</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>26</volume><issue>15</issue><spage>5637</spage><epage>5654</epage><pages>5637-5654</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Spatial distributions and seasonal variations of tropospheric water vapor over the Tibetan Plateau and the surrounding areas are explored by means of water vapor products from the high-resolution Atmospheric Infrared Sounder (AIRS) on board theAquasatellite and the NASA Water Vapor Project (NVAP). Because NVAP has a serious temporal inhomogeneity issue found in previous studies, the AIRS retrieval product is primarily applied here, though similar seasonal variations can be derived in both datasets. Intense horizontal gradients appear along the edges of the plateau in the lower-tropospheric (500–700 hPa) water vapor and columnar precipitable water, in particular over the regions along the southeastern boundary. Rich horizontal structures are also seen within the plateau, but with a weaker gradient. In the mid- to upper troposphere (300–500 hPa), horizontal gradients are relatively weak. It is shown that there is always a deep layer of high water vapor content over the plateau with a peak around 500 hPa, which can extend from the surface to roughly 300 hPa and even to 100 hPa at some locations. This layer of high water vapor content has consistent influence on precipitating processes in the downstream regions such as the valleys of the Yellow and Yangtze Rivers. Estimated vertically integrated water vapor flux and moisture divergence in the two layers (500–700 and 300–500 hPa) further confirm the effect of the Tibetan Plateau on the downstream regions. In particular, the mid- to upper-layer water vapor (300–500 hPa) tends to play an essential role during both the warm and cold seasons, confirmed by the spatial distribution of seasonal-mean precipitation.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-12-00574.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2013-08, Vol.26 (15), p.5637-5654 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2813974590 |
source | Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Atmosphere Atmospheric Infrared Sounder Atmospherics Cold season Datasets Deep layer Earth, ocean, space Exact sciences and technology External geophysics Gauges Gradients Ground stations Inhomogeneity Mean precipitation Meteorological satellites Meteorology Moisture effects Plateaus Precipitable water Precipitation Rain Rainy seasons Rivers Satellites Seasonal distribution Seasonal variation Seasonal variations Seasons Sounding Spatial distribution Stratosphere Troposphere Tropospheric water vapor Upper troposphere Vapors Warm seasons Water in the atmosphere (humidity, clouds, evaporation, precipitation) Water vapor Water vapor content Water vapor flux Water vapour |
title | Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Distributions%20and%20Seasonal%20Variations%20of%20Tropospheric%20Water%20Vapor%20Content%20over%20the%20Tibetan%20Plateau&rft.jtitle=Journal%20of%20climate&rft.au=Zhang,%20Yuwei&rft.date=2013-08-01&rft.volume=26&rft.issue=15&rft.spage=5637&rft.epage=5654&rft.pages=5637-5654&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-12-00574.1&rft_dat=%3Cjstor_proqu%3E26192717%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441252006&rft_id=info:pmid/&rft_jstor_id=26192717&rfr_iscdi=true |