On the Metainferential Solution to the Semantic Paradoxes

Substructural solutions to the semantic paradoxes have been broadly discussed in recent years. In particular, according to the non-transitive solution, we have to give up the metarule of Cut, whose role is to guarantee that the consequence relation is transitive. This concession—giving up a meta rul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of philosophical logic 2023-06, Vol.52 (3), p.797-820
1. Verfasser: Golan, Rea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Substructural solutions to the semantic paradoxes have been broadly discussed in recent years. In particular, according to the non-transitive solution, we have to give up the metarule of Cut, whose role is to guarantee that the consequence relation is transitive. This concession—giving up a meta rule—allows us to maintain the entire consequence relation of classical logic. The non-transitive solution has been generalized in recent works into a hierarchy of logics where classicality is maintained at more and more metainferential levels. All the logics in this hierarchy can accommodate a truth predicate, including the logic at the top of the hierarchy—known as C M ω —which presumably maintains classicality at all levels. C M ω has so far been accounted for exclusively in model-theoretic terms. Therefore, there remains an open question: how do we account for this logic in proof-theoretic terms? Can there be found a proof system that admits each and every classical principle—at all inferential levels—but nevertheless blocks the derivation of the liar? In the present paper, I solve this problem by providing such a proof system and establishing soundness and completeness results. Yet, I also argue that the outcome is philosophically unsatisfactory. In fact, I’m afraid that in light of my results this metainferential solution to the paradoxes can hardly be called a “solution,” let alone a good one.
ISSN:0022-3611
1573-0433
DOI:10.1007/s10992-022-09688-y