Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture

We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Fan, Changjun, Shen, Mutian, Nussinov, Zohar, Liu, Zhong, Sun, Yizhou, Yang-Yu, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fan, Changjun
Shen, Mutian
Nussinov, Zohar
Liu, Zhong
Sun, Yizhou
Yang-Yu, Liu
description We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in searching for the spin-glass ground states. We demonstrate that, with a reasonably larger number of initial spin configurations, our results agree with the asymptotic scaling form assumed by finite-size corrections.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2813746271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813746271</sourcerecordid><originalsourceid>FETCH-proquest_journals_28137462713</originalsourceid><addsrcrecordid>eNqNzL0KwjAUhuEgCIr2Hg44F9pEW3H1B2dxl1CPaUpI4jnJ4N2bwQtw-obn452JpVSqrfdbKReiYp6appFdL3c7tRTDDaP7QAoHOCFGILT-FWjAJzjU5K03MGImy8kOkJBTkeCBo_W1cZoZDIXsn8BJFz7AfURwmgwSRDukTLgW85d2jNVvV2JzOd-P1zpSeOeSfEwhky_0kPtW9dtO9q367_UF2ltGIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813746271</pqid></control><display><type>article</type><title>Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture</title><source>Free E- Journals</source><creator>Fan, Changjun ; Shen, Mutian ; Nussinov, Zohar ; Liu, Zhong ; Sun, Yizhou ; Yang-Yu, Liu</creator><creatorcontrib>Fan, Changjun ; Shen, Mutian ; Nussinov, Zohar ; Liu, Zhong ; Sun, Yizhou ; Yang-Yu, Liu</creatorcontrib><description>We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in searching for the spin-glass ground states. We demonstrate that, with a reasonably larger number of initial spin configurations, our results agree with the asymptotic scaling form assumed by finite-size corrections.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ground state ; Spin glasses</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fan, Changjun</creatorcontrib><creatorcontrib>Shen, Mutian</creatorcontrib><creatorcontrib>Nussinov, Zohar</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><creatorcontrib>Sun, Yizhou</creatorcontrib><creatorcontrib>Yang-Yu, Liu</creatorcontrib><title>Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture</title><title>arXiv.org</title><description>We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in searching for the spin-glass ground states. We demonstrate that, with a reasonably larger number of initial spin configurations, our results agree with the asymptotic scaling form assumed by finite-size corrections.</description><subject>Ground state</subject><subject>Spin glasses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzL0KwjAUhuEgCIr2Hg44F9pEW3H1B2dxl1CPaUpI4jnJ4N2bwQtw-obn452JpVSqrfdbKReiYp6appFdL3c7tRTDDaP7QAoHOCFGILT-FWjAJzjU5K03MGImy8kOkJBTkeCBo_W1cZoZDIXsn8BJFz7AfURwmgwSRDukTLgW85d2jNVvV2JzOd-P1zpSeOeSfEwhky_0kPtW9dtO9q367_UF2ltGIA</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Fan, Changjun</creator><creator>Shen, Mutian</creator><creator>Nussinov, Zohar</creator><creator>Liu, Zhong</creator><creator>Sun, Yizhou</creator><creator>Yang-Yu, Liu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230512</creationdate><title>Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture</title><author>Fan, Changjun ; Shen, Mutian ; Nussinov, Zohar ; Liu, Zhong ; Sun, Yizhou ; Yang-Yu, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28137462713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ground state</topic><topic>Spin glasses</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Changjun</creatorcontrib><creatorcontrib>Shen, Mutian</creatorcontrib><creatorcontrib>Nussinov, Zohar</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><creatorcontrib>Sun, Yizhou</creatorcontrib><creatorcontrib>Yang-Yu, Liu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Changjun</au><au>Shen, Mutian</au><au>Nussinov, Zohar</au><au>Liu, Zhong</au><au>Sun, Yizhou</au><au>Yang-Yu, Liu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture</atitle><jtitle>arXiv.org</jtitle><date>2023-05-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We wish to thank Stefan Boettcher for prompting us to further check and highlight the accuracy and scaling of our results. Here we provide a comprehensive response to the Comment written by him. We argue that the Comment did not account for the fairness of the comparison between different methods in searching for the spin-glass ground states. We demonstrate that, with a reasonably larger number of initial spin configurations, our results agree with the asymptotic scaling form assumed by finite-size corrections.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2813746271
source Free E- Journals
subjects Ground state
Spin glasses
title Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reply%20to:%20Deep%20reinforced%20learning%20heuristic%20tested%20on%20spin-glass%20ground%20states:%20The%20larger%20picture&rft.jtitle=arXiv.org&rft.au=Fan,%20Changjun&rft.date=2023-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2813746271%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813746271&rft_id=info:pmid/&rfr_iscdi=true