Efficient Coded Multi-Party Computation at Edge Networks

Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Vedadi, Elahe, Keshtkarjahromi, Yasaman, Seferoglu, Hulya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vedadi, Elahe
Keshtkarjahromi, Yasaman
Seferoglu, Hulya
description Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in computations. The current approach for designing CMPC algorithms is to merely combine efficient coded computation constructions with MPC. We show that this approach fails short of being efficient; e.g., entangled polynomial codes are not necessarily better than PolyDot codes in MPC setting, while they are always better for coded computation. Motivated by this observation, we propose a new construction; Adaptive Gap Entangled (AGE) polynomial codes for MPC. We show through analysis and simulations that MPC with AGE codes always perform better than existing CMPC algorithms in terms of the required number of workers as well as computation, storage, and communication overhead.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2813744034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813744034</sourcerecordid><originalsourceid>FETCH-proquest_journals_28137440343</originalsourceid><addsrcrecordid>eNqNikELwiAYQCUIGrX_IHQeOHXN-zC6FB26D0kdrqVLP4n-fTv0Azo9eO-tUEEZqyvBKd2gMqWREEIPLW0aViAhrXV3ZzzgLmij8TlP4KqrivBZzHPOoMAFjxVgqQeDLwbeIT7SDq2tmpIpf9yi_VHeulM1x_DKJkE_hhz9knoqatZyThhn_11fF_41sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813744034</pqid></control><display><type>article</type><title>Efficient Coded Multi-Party Computation at Edge Networks</title><source>Free E- Journals</source><creator>Vedadi, Elahe ; Keshtkarjahromi, Yasaman ; Seferoglu, Hulya</creator><creatorcontrib>Vedadi, Elahe ; Keshtkarjahromi, Yasaman ; Seferoglu, Hulya</creatorcontrib><description>Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in computations. The current approach for designing CMPC algorithms is to merely combine efficient coded computation constructions with MPC. We show that this approach fails short of being efficient; e.g., entangled polynomial codes are not necessarily better than PolyDot codes in MPC setting, while they are always better for coded computation. Motivated by this observation, we propose a new construction; Adaptive Gap Entangled (AGE) polynomial codes for MPC. We show through analysis and simulations that MPC with AGE codes always perform better than existing CMPC algorithms in terms of the required number of workers as well as computation, storage, and communication overhead.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational efficiency ; Edge computing ; Machine learning ; Polynomials</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vedadi, Elahe</creatorcontrib><creatorcontrib>Keshtkarjahromi, Yasaman</creatorcontrib><creatorcontrib>Seferoglu, Hulya</creatorcontrib><title>Efficient Coded Multi-Party Computation at Edge Networks</title><title>arXiv.org</title><description>Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in computations. The current approach for designing CMPC algorithms is to merely combine efficient coded computation constructions with MPC. We show that this approach fails short of being efficient; e.g., entangled polynomial codes are not necessarily better than PolyDot codes in MPC setting, while they are always better for coded computation. Motivated by this observation, we propose a new construction; Adaptive Gap Entangled (AGE) polynomial codes for MPC. We show through analysis and simulations that MPC with AGE codes always perform better than existing CMPC algorithms in terms of the required number of workers as well as computation, storage, and communication overhead.</description><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Edge computing</subject><subject>Machine learning</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELwiAYQCUIGrX_IHQeOHXN-zC6FB26D0kdrqVLP4n-fTv0Azo9eO-tUEEZqyvBKd2gMqWREEIPLW0aViAhrXV3ZzzgLmij8TlP4KqrivBZzHPOoMAFjxVgqQeDLwbeIT7SDq2tmpIpf9yi_VHeulM1x_DKJkE_hhz9knoqatZyThhn_11fF_41sw</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Vedadi, Elahe</creator><creator>Keshtkarjahromi, Yasaman</creator><creator>Seferoglu, Hulya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230511</creationdate><title>Efficient Coded Multi-Party Computation at Edge Networks</title><author>Vedadi, Elahe ; Keshtkarjahromi, Yasaman ; Seferoglu, Hulya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28137440343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Edge computing</topic><topic>Machine learning</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Vedadi, Elahe</creatorcontrib><creatorcontrib>Keshtkarjahromi, Yasaman</creatorcontrib><creatorcontrib>Seferoglu, Hulya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vedadi, Elahe</au><au>Keshtkarjahromi, Yasaman</au><au>Seferoglu, Hulya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient Coded Multi-Party Computation at Edge Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-05-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in computations. The current approach for designing CMPC algorithms is to merely combine efficient coded computation constructions with MPC. We show that this approach fails short of being efficient; e.g., entangled polynomial codes are not necessarily better than PolyDot codes in MPC setting, while they are always better for coded computation. Motivated by this observation, we propose a new construction; Adaptive Gap Entangled (AGE) polynomial codes for MPC. We show through analysis and simulations that MPC with AGE codes always perform better than existing CMPC algorithms in terms of the required number of workers as well as computation, storage, and communication overhead.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2813744034
source Free E- Journals
subjects Algorithms
Computational efficiency
Edge computing
Machine learning
Polynomials
title Efficient Coded Multi-Party Computation at Edge Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20Coded%20Multi-Party%20Computation%20at%20Edge%20Networks&rft.jtitle=arXiv.org&rft.au=Vedadi,%20Elahe&rft.date=2023-05-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2813744034%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813744034&rft_id=info:pmid/&rfr_iscdi=true